Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Comput Sci ; 4(2): 104-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38413777

ABSTRACT

Public sequencing databases contain vast amounts of biological information, yet they are largely underutilized as it is challenging to efficiently search them for any sequence(s) of interest. We present kmindex, an approach that can index thousands of metagenomes and perform sequence searches in a fraction of a second. The index construction is an order of magnitude faster than previous methods, while search times are two orders of magnitude faster. With negligible false positive rates below 0.01%, kmindex outperforms the precision of existing approaches by four orders of magnitude. Here we demonstrate the scalability of kmindex by successfully indexing 1,393 marine seawater metagenome samples from the Tara Oceans project. Additionally, we introduce the publicly accessible web server Ocean Read Atlas, which enables real-time queries on the Tara Oceans dataset.


Subject(s)
Genomics , Seawater , Oceans and Seas , Metagenome/genetics , Databases, Nucleic Acid
2.
Nucleic Acids Res ; 50(W1): W516-W526, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35687095

ABSTRACT

Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Subject(s)
Bacteria , Eukaryota , Marine Biology , Plankton , Bacteria/genetics , Eukaryota/genetics , Metagenome , Phylogeny , Plankton/genetics
3.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768741

ABSTRACT

Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.


Subject(s)
Light Signal Transduction/physiology , Luminescent Proteins/metabolism , Photoreceptor Cells/physiology , Animals , Bacteria/metabolism , Communication , Dinoflagellida/metabolism , Light , Luciferases/metabolism , Luminescent Measurements , Photoreceptor Cells/metabolism , Plankton/metabolism , Predatory Behavior
4.
Mol Ecol Resour ; 21(4): 1347-1358, 2021 May.
Article in English | MEDLINE | ID: mdl-33434383

ABSTRACT

The Ocean Barcode Atlas (OBA) is a user friendly web service designed for biologists who wish to explore the biodiversity and biogeography of marine organisms locked in otherwise difficult to mine planetary scale DNA metabarcode data sets. Using just a web browser, a comprehensive picture of the diversity of a taxon or a barcode sequence is visualized graphically on world maps and interactive charts. Interactive results panels allow dynamic threshold adjustments and the display of diversity results in their environmental context measured at the time of sampling (temperature, oxygen, latitude, etc). Ecological analyses such as alpha and beta-diversity plots are produced via publication quality vector graphics representations. Currently, the Ocean Barcode Altas is deployed online with the (i) Tara Oceans eukaryotic 18S-V9 rDNA metabarcodes; (ii) Tara Oceans 16S/18S rRNA mi Tags; and (iii) 16S-V4 V5 metabarcodes collected during the Malaspina-2010 expedition. Additional prokaryotic or eukaryotic plankton barcode data sets will be added upon availability, given they provide the required complement of barcodes (including raw reads to compute barcode abundance) associated with their contextual environmental variables. Ocean Barcode Atlas is a freely-available web service at: http://oba.mio.osupytheas.fr/ocean-atlas/.


Subject(s)
Aquatic Organisms , Biodiversity , DNA Barcoding, Taxonomic , Aquatic Organisms/classification , Data Visualization , Internet , Oceans and Seas , Plankton , RNA, Ribosomal, 18S , Software
5.
NAR Genom Bioinform ; 2(2): lqaa018, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33575578

ABSTRACT

Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.

6.
Nucleic Acids Res ; 46(W1): W289-W295, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29788376

ABSTRACT

The Ocean Gene Atlas is a web service to explore the biogeography of genes from marine planktonic organisms. It allows users to query protein or nucleotide sequences against global ocean reference gene catalogs. With just one click, the abundance and location of target sequences are visualized on world maps as well as their taxonomic distribution. Interactive results panels allow for adjusting cutoffs for alignment quality and displaying the abundances of genes in the context of environmental features (temperature, nutrients, etc.) measured at the time of sampling. The ease of use enables non-bioinformaticians to explore quantitative and contextualized information on genes of interest in the global ocean ecosystem. Currently the Ocean Gene Atlas is deployed with (i) the Ocean Microbial Reference Gene Catalog (OM-RGC) comprising 40 million non-redundant mostly prokaryotic gene sequences associated with both Tara Oceans and Global Ocean Sampling (GOS) gene abundances and (ii) the Marine Atlas of Tara Ocean Unigenes (MATOU) composed of >116 million eukaryote unigenes. Additional datasets will be added upon availability of further marine environmental datasets that provide the required complement of sequence assemblies, raw reads and contextual environmental parameters. Ocean Gene Atlas is a freely-available web service at: http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Subject(s)
Ecosystem , Internet , Plankton/genetics , Software , Aquatic Organisms/genetics , Biodiversity , Oceans and Seas , Phylogeography
7.
ISME J ; 10(5): 1134-46, 2016 May.
Article in English | MEDLINE | ID: mdl-26613339

ABSTRACT

Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 µm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.


Subject(s)
Metagenome , Plankton/enzymology , Plankton/genetics , RNA-Directed DNA Polymerase/genetics , Seawater/microbiology , Eukaryota/enzymology , Eukaryota/genetics , Eukaryota/isolation & purification , Phylogeny , Plankton/metabolism , Prokaryotic Cells/enzymology , Prokaryotic Cells/metabolism , RNA-Directed DNA Polymerase/metabolism , Retroelements , Seawater/virology , Transcription, Genetic
8.
Proc Natl Acad Sci U S A ; 112(38): E5327-35, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351664

ABSTRACT

Acanthamoeba species are infected by the largest known DNA viruses. These include icosahedral Mimiviruses, amphora-shaped Pandoraviruses, and Pithovirus sibericum, the latter one isolated from 30,000-y-old permafrost. Mollivirus sibericum, a fourth type of giant virus, was isolated from the same permafrost sample. Its approximately spherical virion (0.6-µm diameter) encloses a 651-kb GC-rich genome encoding 523 proteins of which 64% are ORFans; 16% have their closest homolog in Pandoraviruses and 10% in Acanthamoeba castellanii probably through horizontal gene transfer. The Mollivirus nucleocytoplasmic replication cycle was analyzed using a combination of "omic" approaches that revealed how the virus highjacks its host machinery to actively replicate. Surprisingly, the host's ribosomal proteins are packaged in the virion. Metagenomic analysis of the permafrost sample uncovered the presence of both viruses, yet in very low amount. The fact that two different viruses retain their infectivity in prehistorical permafrost layers should be of concern in a context of global warming. Giant viruses' diversity remains to be fully explored.


Subject(s)
Acanthamoeba/virology , Viruses/genetics , Acanthamoeba castellanii/virology , Biological Evolution , Cloning, Molecular , Computational Biology , DNA Replication , Gene Library , Gene Transfer, Horizontal , Genome, Viral , Genomics , Global Warming , Mass Spectrometry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Sequence Data , Multigene Family , Permafrost , Phylogeny , Proteome , Proteomics/methods , Sequence Analysis, DNA , Viral Proteins/genetics , Virion/genetics
9.
ISME J ; 9(6): 1365-77, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25461969

ABSTRACT

Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.


Subject(s)
Haptophyta/genetics , Oceans and Seas , Phytoplankton/genetics , Animals , Biomass , Chlorophyll/chemistry , Computational Biology , Diploidy , Ecology , Flagella/metabolism , Gene Expression Profiling , Genetic Markers/genetics , Genome , Genomics , Genotype , Life Cycle Stages
10.
Proc Natl Acad Sci U S A ; 111(11): 4274-9, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591590

ABSTRACT

The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 µm in diameter and adenine-thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 µm in length and guanine-cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 µm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.


Subject(s)
Amoeba/virology , DNA Viruses/genetics , DNA Viruses/ultrastructure , Phylogeny , Soil Microbiology , Base Sequence , Cluster Analysis , Computational Biology , DNA Viruses/classification , Gene Expression Profiling , Microscopy, Electron , Molecular Sequence Annotation , Molecular Sequence Data , Proteomics , Sequence Analysis, DNA , Siberia
11.
Science ; 341(6143): 281-6, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23869018

ABSTRACT

Ten years ago, the discovery of Mimivirus, a virus infecting Acanthamoeba, initiated a reappraisal of the upper limits of the viral world, both in terms of particle size (>0.7 micrometers) and genome complexity (>1000 genes), dimensions typical of parasitic bacteria. The diversity of these giant viruses (the Megaviridae) was assessed by sampling a variety of aquatic environments and their associated sediments worldwide. We report the isolation of two giant viruses, one off the coast of central Chile, the other from a freshwater pond near Melbourne (Australia), without morphological or genomic resemblance to any previously defined virus families. Their micrometer-sized ovoid particles contain DNA genomes of at least 2.5 and 1.9 megabases, respectively. These viruses are the first members of the proposed "Pandoravirus" genus, a term reflecting their lack of similarity with previously described microorganisms and the surprises expected from their future study.


Subject(s)
Amoeba/virology , Evolution, Molecular , Genome, Viral , Mimiviridae/classification , Mimiviridae/genetics , Base Sequence , Fresh Water/virology , Mimiviridae/isolation & purification , Mimiviridae/ultrastructure , Molecular Sequence Data , Phylogeny , Proteomics , Seawater/virology
12.
Proc Natl Acad Sci U S A ; 110(26): 10800-5, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754393

ABSTRACT

Large dsDNA viruses are involved in the population control of many globally distributed species of eukaryotic phytoplankton and have a prominent role in bloom termination. The genus Phaeocystis (Haptophyta, Prymnesiophyceae) includes several high-biomass-forming phytoplankton species, such as Phaeocystis globosa, the blooms of which occur mostly in the coastal zone of the North Atlantic and the North Sea. Here, we report the 459,984-bp-long genome sequence of P. globosa virus strain PgV-16T, encoding 434 proteins and eight tRNAs and, thus, the largest fully sequenced genome to date among viruses infecting algae. Surprisingly, PgV-16T exhibits no phylogenetic affinity with other viruses infecting microalgae (e.g., phycodnaviruses), including those infecting Emiliania huxleyi, another ubiquitous bloom-forming haptophyte. Rather, PgV-16T belongs to an emerging clade (the Megaviridae) clustering the viruses endowed with the largest known genomes, including Megavirus, Mimivirus (both infecting acanthamoeba), and a virus infecting the marine microflagellate grazer Cafeteria roenbergensis. Seventy-five percent of the best matches of PgV-16T-predicted proteins correspond to two viruses [Organic Lake phycodnavirus (OLPV)1 and OLPV2] from a hypersaline lake in Antarctica (Organic Lake), the hosts of which are unknown. As for OLPVs and other Megaviridae, the PgV-16T sequence data revealed the presence of a virophage-like genome. However, no virophage particle was detected in infected P. globosa cultures. The presence of many genes found only in Megaviridae in its genome and the presence of an associated virophage strongly suggest that PgV-16T shares a common ancestry with the largest known dsDNA viruses, the host range of which already encompasses the earliest diverging branches of domain Eukarya.


Subject(s)
Genome, Viral , Haptophyta/virology , Phycodnaviridae/genetics , Chromosome Mapping , Gene Duplication , Haptophyta/ultrastructure , Molecular Sequence Data , Phycodnaviridae/classification , Phycodnaviridae/ultrastructure , Phylogeny , Phytoplankton/ultrastructure , Phytoplankton/virology , Proteome , Retroelements , Satellite Viruses/genetics , Viral Proteins/genetics
13.
BMC Evol Biol ; 11: 200, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21745361

ABSTRACT

BACKGROUND: Since the discovery of the Malta fever agent, Brucella melitensis, in the 19th century, six terrestrial mammal-associated Brucella species were recognized over the next century. More recently the number of novel Brucella species has increased and among them, isolation of species B. pinnipedialis and B. ceti from marine mammals raised many questions about their origin as well as on the evolutionary history of the whole genus. RESULTS: We report here on the first complete genome sequence of a Brucella strain isolated from marine mammals, Brucella pinnipedialis strain B2/94. A whole gene-based phylogenetic analysis shows that five main groups of host-associated Brucella species rapidly diverged from a likely free-living ancestor close to the recently isolated B. microti. However, this tree lacks the resolution required to resolve the order of divergence of those groups. Comparative analyses focusing on a) genome segments unshared between B. microti and B. pinnipedialis, b) gene deletion/fusion events and c) positions and numbers of Brucella specific IS711 elements in the available Brucella genomes provided enough information to propose a branching order for those five groups. CONCLUSIONS: In this study, it appears that the closest relatives of marine mammal Brucella sp. are B. ovis and Brucella sp. NVSL 07-0026 isolated from a baboon, followed by B. melitensis and B. abortus strains, and finally the group consisting of B. suis strains, including B. canis and the group consisting of the single B. neotomae species. We were not able, however, to resolve the order of divergence of the two latter groups.


Subject(s)
Brucella/classification , Brucella/genetics , Evolution, Molecular , Genome, Bacterial , Animals , Brucella/isolation & purification , Caniformia/microbiology , Cetacea/microbiology , Molecular Sequence Data , Phylogeny , Seawater/microbiology
14.
Genome Res ; 20(5): 664-74, 2010 May.
Article in English | MEDLINE | ID: mdl-20360389

ABSTRACT

Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic "virion factory," we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5' and 3' extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus "virophage." These results-validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)--will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system.


Subject(s)
Acanthamoeba/virology , Gene Expression Profiling , Gene Expression Regulation, Viral , Genes, Viral , Mimiviridae/pathogenicity , RNA, Messenger , Sequence Analysis, DNA , Animals , DNA, Complementary/genetics , DNA, Complementary/metabolism , Genome, Viral , Microscopy, Electron , Mimiviridae/genetics , Mimiviridae/metabolism , Mimiviridae/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/metabolism , Virion/ultrastructure
15.
BMC Genomics ; 10: 352, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-19653890

ABSTRACT

BACKGROUND: Using a combination of pyrosequencing and conventional Sanger sequencing, the complete genome sequence of the recently described novel Brucella species, Brucella microti, was determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all other Brucella species, B. microti is a fast growing and biochemically very active microorganism with a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical phenotype of B. microti prompted us to look for genomic differences compared to other Brucella species and to look for similarities with Ochrobactrum. RESULTS: The genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert only present in B. microti. However, this insert is unlikely to have any phenotypical consequence. Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but impaired in other sequenced Brucella. The most noticeable difference between B. microti and other Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation could have pleiotropic effects and explain the fast growth of B. microti. CONCLUSION: Contrary to expectations from the phenotypic analysis, the genome sequence of B. microti is highly similar to that of known Brucella species, and is remotely related to the one of O. anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result in vastly different phenotypes remains to be elucidated. This unexpected finding will complicate the task of identifying virulence determinants in the Brucella genus. The genome sequence of B. microti will serve as a model for differential expression analysis and complementation studies. Our results also raise some concerns about the importance given to phenotypical traits in the definition of bacterial species.


Subject(s)
Brucella/genetics , Genome, Bacterial , Base Sequence , Brucella/classification , Comparative Genomic Hybridization , DNA, Bacterial/genetics , Genes, Bacterial , Molecular Sequence Data , Ochrobactrum anthropi/genetics , Phenotype , Phylogeny , Pseudogenes , RNA, Ribosomal, 23S/genetics , Sequence Alignment , Sequence Analysis, DNA
16.
PLoS Genet ; 4(9): e1000185, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18787695

ABSTRACT

In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163-1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains.


Subject(s)
Borrelia/genetics , Genome, Bacterial , Animals , Antigenic Variation , Bacterial Proteins/genetics , Borrelia/classification , Borrelia/pathogenicity , Borrelia Infections/immunology , Borrelia Infections/microbiology , Lyme Disease/microbiology , Phthiraptera/microbiology , Relapsing Fever/microbiology , Ticks/microbiology
17.
J Virol ; 82(13): 6697-710, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18417582

ABSTRACT

Sequencing of plant nuclear genomes reveals the widespread presence of integrated viral sequences known as endogenous pararetroviruses (EPRVs). Banana is one of the three plant species known to harbor infectious EPRVs. Musa balbisiana carries integrated copies of Banana streak virus (BSV), which are infectious by releasing virions in interspecific hybrids. Here, we analyze the organization of the EPRV of BSV Goldfinger (BSGfV) present in the wild diploid M. balbisiana cv. Pisang Klutuk Wulung (PKW) revealed by the study of Musa bacterial artificial chromosome resources and interspecific genetic cross. cv. PKW contains two similar EPRVs of BSGfV. Genotyping of these integrants and studies of their segregation pattern show an allelic insertion. Despite the fact that integrated BSGfV has undergone extensive rearrangement, both EPRVs contain the full-length viral genome. The high degree of sequence conservation between the integrated and episomal form of the virus indicates a recent integration event; however, only one allele is infectious. Analysis of BSGfV EPRV segregation among an F1 population from an interspecific genetic cross revealed that these EPRV sequences correspond to two alleles originating from a single integration event. We describe here for the first time the full genomic and genetic organization of the two EPRVs of BSGfV present in cv. PKW in response to the challenge facing both scientists and breeders to identify and generate genetic resources free from BSV. We discuss the consequences of this unique host-pathogen interaction in terms of genetic and genomic plant defenses versus strategies of infectious BSGfV EPRVs.


Subject(s)
Badnavirus/genetics , Endogenous Retroviruses/genetics , Genome, Plant/genetics , Musa/genetics , Virus Integration/genetics , Base Sequence , Chromosomes, Artificial, Bacterial , Conserved Sequence/genetics , Crosses, Genetic , DNA Primers/genetics , Genotype , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Sequence Alignment , Sequence Analysis, DNA
18.
BMC Genomics ; 9: 58, 2008 Jan 30.
Article in English | MEDLINE | ID: mdl-18234080

ABSTRACT

BACKGROUND: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. RESULTS: We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. CONCLUSION: These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.


Subject(s)
Genome, Plant/genetics , Musa/classification , Musa/genetics , Oryza/genetics , Synteny/genetics , Arabidopsis/genetics , Base Composition , Chromosomes, Artificial, Bacterial , DNA Transposable Elements/genetics , DNA, Complementary/genetics , Evolution, Molecular , Expressed Sequence Tags , Gene Duplication , Genes, Plant/genetics , Musa/enzymology , Oryza/enzymology , Polymorphism, Restriction Fragment Length , Repetitive Sequences, Nucleic Acid/genetics , Sorghum/genetics , Species Specificity
19.
Plant Physiol ; 132(3): 1162-76, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12857799

ABSTRACT

The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called "search by signal" methods) and the delineation of promoters by considering both sequence content and structural features ("search by content" methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5'-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of "putative" CpG and CpNpG islands in plants.


Subject(s)
Computational Biology/methods , Gene Expression Regulation, Plant , Genome, Plant , Plants/genetics , Promoter Regions, Genetic/genetics , Response Elements/genetics
20.
Plant Mol Biol ; 49(6): 683-99, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12081375

ABSTRACT

Using a genomic clone encoding a rice lipid transfer protein, LTP1, we analysed the activity of the 5' region of the Ltp1 gene in transgenic rice (Oryza sativa L.) during plant development and under pathogen attack. The -1176/+13, -556/+13 and -284/+13 regions of the promoter were fused upstream from the uidA reporter gene and nos 3' polyadenylation signal, resulting in the pdelta1176Gus, pdelta556Gus and pdelta284Gus constructs which were transferred to rice by microprojectile bombardment. Histochemical and fluorometric GUS assays and in situ detection of uidA transcripts in transgenic homozygous lines harbouring the pdelta1176Gus construct demonstrated that the Ltp1 promoter is preferentially active in aerial vegetative and reproductive organs and that both specificity and level of expression are regulated during organ development. In leaf sheath, GUS activity which is initially strictly localized in the epidermis of growing tissue, becomes restricted to the vascular system in mature tissues. In expanded leaf blade, expression of the uidA gene was restricted to the cutting level suggesting inducibility by wounding. Strong activity was detected in lemma and palea, sterile glumes, and immature anther walls and microspores but not in female reproductive organs. No GUS activity was detected during seed embryo maturation whereas the uidA gene was strongly expressed at early stages of somatic embryogenesis in scutellum tissue. The Ltp1 transcripts were found to strongly accumulate in response to inoculation with the fungal agent of the blast disease, Magnaporthe grisea, in two rice cultivars exhibiting compatible or incompatible host-pathogen interactions. Analysis of pdelta1176Gus leaf samples inoculated with the blast fungus demonstrated that the Ltp1 promoter is induced in all cell types of tissues surrounding the lesion and notably in stomata guard cells. In plants harbouring the Ltp1 promoter deletion construct pdelta556Gus, activity was solely detected in the vascular system of mature leaves whereas no uidA gene expression was observed in pdelta284Gus plants. These observations are consistent with the proposed role of LTP1 in strenghtening of structural barriers and organ protection against mechanical disruption and pathogen attack.


Subject(s)
Carrier Proteins/genetics , Magnaporthe/growth & development , Oryza/genetics , Antigens, Plant , Base Sequence , DNA, Plant/chemistry , DNA, Plant/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Glucuronidase/genetics , Glucuronidase/metabolism , Molecular Sequence Data , Mutation , Oryza/growth & development , Oryza/microbiology , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/microbiology , Sequence Analysis, DNA , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...