Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 34(1): e2107038, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34609032

ABSTRACT

Recapitulation of complex tissues signifies a remarkable challenge and, to date, only a few approaches have emerged that can efficiently reconstruct necessary gradients in 3D constructs. This is true even though mimicry of these gradients is of great importance to establish the functionality of engineered tissues and devices. Here, a composable-gradient Digital Light Processing (DLP)-based (bio)printing system is developed, utilizing the unprecedented integration of a microfluidic mixer for the generation of either continual or discrete gradients of desired (bio)inks in real time. Notably, the precisely controlled gradients are composable on-the-fly by facilely by adjusting the (bio)ink flow ratios. In addition, this setup is designed in such a way that (bio)ink waste is minimized when exchanging the gradient (bio)inks, further enhancing this time- and (bio)ink-saving strategy. Various planar and 3D structures exhibiting continual gradients of materials, of cell densities, of growth factor concentrations, of hydrogel stiffness, and of porosities in horizontal and/or vertical direction, are exemplified. The composable fabrication of multifunctional gradients strongly supports the potential of the unique bioprinting system in numerous biomedical applications.


Subject(s)
Bioprinting , Hydrogels/chemistry , Ink , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
2.
Nat Commun ; 12(1): 6600, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815411

ABSTRACT

Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions. The emerging field of living materials has leveraged microbial engineering to produce materials for various applications but building 3D structures in arbitrary patterns and shapes has been a major challenge. Here we set out to develop a bioink, termed as "microbial ink" that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed Escherichia coli (E. coli) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics, and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. In this work, we present the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures.


Subject(s)
Ink , Nanofibers/chemistry , Printing, Three-Dimensional , Protein Engineering , Bacteria/genetics , Bacteria/metabolism , Biocompatible Materials/chemistry , Bioprinting/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering , Hydrogels/chemistry , Rheology , Tissue Engineering
3.
Adv Mater ; 33(35): e2102153, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34278618

ABSTRACT

3D printing has emerged as an enabling approach in a variety of different fields. However, the bulk volume of printing systems limits the expansion of their applications. In this study, a portable 3D Digital Light Processing (DLP) printer is built based on a smartphone-powered projector and a custom-written smartphone-operated app. Constructs with detailed surface architectures, porous features, or hollow structures, as well as sophisticated tissue analogs, are successfully printed using this platform, by utilizing commercial resins as well as a range of hydrogel-based inks, including poly(ethylene glycol)-diacrylate, gelatin methacryloyl, or allylated gelatin. Moreover, due to the portability of the unique DLP printer, medical implants can be fabricated for point-of-care usage, and cell-laden tissues can be produced in situ, achieving a new milestone for mobile-health technologies. Additionally, the all-in-one printing system described herein enables the integration of the 3D scanning smartphone app to obtain object-derived 3D digital models for subsequent printing. Along with further developments, this portable, modular, and easy-to-use smartphone-enabled DLP printer is anticipated to secure exciting opportunities for applications in resource-limited and point-of-care settings not only in biomedicine but also for home and educational purposes.

SELECTION OF CITATIONS
SEARCH DETAIL