Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829308

ABSTRACT

Molten salts play an important role in various energy-related applications such as high-temperature heat transfer fluids and reaction media. However, the extreme molten salt environment causes the degradation of materials, raising safety and sustainability challenges. A fundamental understanding of material-molten salt interfacial evolution is needed. This work studies the transformation of metallic Cr in molten 50/50 mol% KCl-MgCl2via multi-modal in situ synchrotron X-ray nano-tomography, diffraction and spectroscopy combined with density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Notably, in addition to the dissolution of Cr in the molten salt to form porous structures, a δ-A15 Cr phase was found to gradually form as a result of the metal-salt interaction. This phase change of Cr is associated with a change in the coordination environment of Cr at the interface. DFT and AIMD simulations provide a basis for understanding the enhanced stability of δ-A15 Cr vs. bcc Cr, by revealing their competitive phase thermodynamics at elevated temperatures and probing the interfacial behavior of the molten salt at relevant facets. This study provides critical insights into the morphological and chemical evolution of metal-molten salt interfaces. The combination of multimodal synchrotron analysis and atomic simulation also offers an opportunity to explore a broader range of systems critical to energy applications.

2.
J Phys Chem Lett ; 15(19): 5250-5258, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722188

ABSTRACT

Chemical transformations in charge transfer states result from the interplay between electronic dynamics and nuclear reorganization along excited-state trajectories. Here, we investigate the ultrafast structural dynamics following photoinduced electron transfer from the metal-metal-to-ligand charge transfer state of an electron donor, a Pt dimer complex, to a covalently linked electron acceptor group using ultrafast time-resolved wide-angle X-ray scattering and optical transient absorption spectroscopy methods to disentangle the interdependence of the excited-state electronic and nuclear dynamics. Following photoexcitation, Pt-Pt bond formation and contraction takes up to 1 ps, much slower than the corresponding process in analogous complexes without electron acceptor groups. Because the Pt-Pt distance change is slow with respect to excited-state electron transfer, it can affect the rate of electron transfer. These results have potential impacts on controlling electron transfer rates via structural alterations to the electron donor group, tuning the charge transfer driving force.

3.
Adv Mater ; 36(19): e2311341, 2024 May.
Article in English | MEDLINE | ID: mdl-38332453

ABSTRACT

Use of single-atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high-loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono- and bi-metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X-ray absorption spectroscopy and, finally, the catalytic performance of a UPD-synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes.

4.
J Phys Chem Lett ; 15(5): 1521-1528, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38299494

ABSTRACT

Stabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn1+ was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kß nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). The latter allowed us to obtain site-selective XANES information about two distinct Mn centers. The obtained spectroscopic data represent the first electronic structure characterization of low-spin Mn1+ using hard X-ray RIXS and XES and allowed us to confirm its role in anode reduction. Our experimental approach can be expanded to analysis of analogues with other 3d transition metals broadening the application of exotic ionic states in materials engineering.

5.
Nat Commun ; 14(1): 7514, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980344

ABSTRACT

Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4 with other metals.

6.
Environ Sci Technol ; 57(36): 13681-13690, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37650677

ABSTRACT

Here, we investigate the stability and performance of single-atom Pd on TiO2 for the selective dechlorination of 4-chlorophenol. A challenge inherent to single atoms is their high surface free energy, which results in a tendency for the surface migration and aggregation of metal atoms. This work evaluates various factors affecting the stability of Pd single-atoms, including atomic dispersion, coordination environment, and substrate properties, under reductive aqueous conditions. The transition from single atoms to clusters vastly enhanced dechlorination kinetics without diminishing carbon-chlorine bond selectivity. X-ray absorption spectroscopy analysis using both in situ and ex situ conditions followed the dynamic transformation of single atoms into amorphous clusters, which consist of a unique unsaturated coordination environment and few nanometer diameter. The intricate relationship between stability and performance underscores the vital role of detailed characterization to properly determine the true active species for dehalogenation reactions.


Subject(s)
Carbon , Palladium , Chlorides , Chlorine , Kinetics
7.
ACS Omega ; 8(27): 24673-24679, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37457454

ABSTRACT

Understanding and controlling the chemical processes between molten salts and alloys is vital for the safe operation of molten-salt nuclear reactors. Corrosion processes in molten salts are highly dependent on the redox potential of the solution that changes with the presence of fission and corrosion processes, and as such, reactor designers develop electrochemical methods to monitor the salt. However, electrochemical techniques rely on the deconvolution of broad peaks, a process that may be imprecise in the presence of multiple species that emerge during reactor operation. Here, we describe in situ measurements of the concentration and chemical state of corrosion products in molten FLiNaK (eutectic mixture of LiF-NaK-KF) by high-resolution X-ray absorption spectroscopy. We placed a NiCr foil in molten FLiNaK and found the presence of both Ni2+ ions and metallic Ni in the melt, which we attribute to the foil disintegration due to Cr dealloying.

8.
Angew Chem Int Ed Engl ; 62(28): e202304615, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37114904

ABSTRACT

Photoexcited molecular trajectories on potential energy surfaces (PESs) prior to thermalization are intimately connected to the photochemical reaction outcome. The excited-state trajectories of a diplatinum complex featuring photo-activated metal-metal σ-bond formation and associated Pt-Pt stretching motions were detected in real time using femtosecond wide-angle X-ray solution scattering. The observed motions correspond well with coherent vibrational wavepacket motions detected by femtosecond optical transient absorption. Two key coordinates for intersystem crossing have been identified, the Pt-Pt bond length and the orientation of the ligands coordinated with the platinum centers, along which the excited-state trajectories can be projected onto the calculated PESs of the excited states. This investigation has gleaned novel insight into electronic transitions occurring on the time scales of vibrational motions measured in real time, revealing ultrafast nonadiabatic or non-equilibrium processes along excited-state trajectories involving multiple excited-state PESs.

9.
J Phys Chem Lett ; 14(5): 1133-1139, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36705525

ABSTRACT

The Trp-cage miniprotein is one of the smallest systems to exhibit a stable secondary structure and fast-folding dynamics, serving as an apt model system to study transient intermediates with both experimental and computational analyses. Previous spectroscopic characterizations that have been done on Trp-cage have inferred a single stable intermediate on a pathway from folded to unfolded basins. We aim to bridge the understanding of Trp-cage structural folding dynamics on microsecond-time scales, by utilizing time-resolved X-ray solution scattering to probe the temperature-induced unfolding pathway. Our results indicate the formation of a conformationally extended intermediate on the time scale of 1 µs, which undergoes complete unfolding within 5 µs. We further investigated the atomistic structural details of the unfolding pathway using a genetic algorithm to generate ensemble model fits to the scattering profiles. This analysis paves the way for direct benchmarking of theoretical models of protein folding ensembles produced with molecular dynamics simulations.


Subject(s)
Peptides , Protein Folding , Peptides/chemistry , X-Rays , Temperature , Molecular Dynamics Simulation , Algorithms
10.
Nanomaterials (Basel) ; 12(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35889588

ABSTRACT

Mixed-valence cerium oxide nanoparticles (nanoceria) have been investigated with pronounced interest due to a wide range of biomedical and industrial applications that arises from its remarkable redox catalytic properties. However, there is no understanding of how to control the formation of these two types of nanoceria to obtain Ce3+/Ce4+ ratios required in various applications. In this work, using a soluble borate glass, nanoceria with specific ratios of Ce3+/Ce4+ are created and extracted via controlled glass-melting parameters. Glass embedded with nanoceria as well as nanoceria extracted from the glass were studied via XANES and fitted with the Multivariate Curve Resolution (MCR) technique to calculate the ratio of Ce3+/Ce4+. Results show that mixed-valence nanoceria with specific ratios are hermetically sealed within the glass for long durations. When the glass dissolves, the mixed-valence nanoceria are released, and the extracted nanoceria have unchanged Ce3+/Ce4+ ratios. Furthermore, TEM investigation on released nanoceria show that the nanoceria consist of several different structures. Although nanocrystal structures of Ce7O12, Ce11O20, and Ce2O3 contribute to the reduced state, a new quasi-stable phase of CeO1.66 has been observed as well.

11.
J Synchrotron Radiat ; 29(Pt 4): 1095-1106, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787577

ABSTRACT

The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.

12.
Front Chem ; 10: 873462, 2022.
Article in English | MEDLINE | ID: mdl-35518718

ABSTRACT

A capacitance increase phenomenon is observed for MoO3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO3 electrodes in 5M ZnCl2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa)xMoOy, is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO3 accompanied by carbonization of the organic molecules; designated as HT-MoO3/C. HT of the precipitate formed in the absence of dopamine in the reaction produced α-MoO3, which was used as a reference material in this study (α-MoO3-ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO3/C and α-MoO3-ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO3/C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO3 and h-MoO3 phases in the structure of HT-MoO3/C. The increased specific capacitance delivered by the HT-MoO3/C electrode as compared to the α-MoO3-ref electrode in 5M ZnCl2 electrolyte in a -0.25-0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl2 electrolyte at a scan rate of 2 mV s-1, the HT-MoO3/C electrode shows a second cycle capacitance of 347.6 F g-1. The higher electrochemical performance of the HT-MoO3/C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications.

13.
Sci Rep ; 12(1): 8420, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589777

ABSTRACT

In this study, we demonstrate three-dimensional (3D) hollow nanosphere electrocatalysts for CO2 conversion into formate with excellent H-Cell performance and industrially-relevant current density in a 25 cm2 membrane electrode assembly electrolyzer device. Varying calcination temperature maximized formate production via optimizing the crystallinity and particle size of the constituent SnO2 nanoparticles. The best performing SnO2 nanosphere catalysts contained ~ 7.5 nm nanocrystals and produced 71-81% formate Faradaic efficiency (FE) between -0.9 V and -1.3 V vs. the reversible hydrogen electrode (RHE) at a maximum formate partial current density of 73 ± 2 mA cmgeo-2 at -1.3 V vs. RHE. The higher performance of nanosphere catalysts over SnO2 nanoparticles and commercially-available catalyst could be ascribed to their initial structure providing higher electrochemical surface area and preventing extensive nanocrystal growth during CO2 reduction. Our results are among the highest performance reported for SnO2 electrocatalysts in aqueous H-cells. We observed an average 68 ± 8% FE over 35 h of operation with multiple on/off cycles. In situ Raman and time-dependent X-ray diffraction measurements identified metallic Sn as electrocatalytic active sites during long-term operation. Further evaluation in a 25 cm2 electrolyzer cell demonstrated impressive performance with a sustained current density of 500 mA cmgeo-2 and an average 75 ± 6% formate FE over 24 h of operation. Our results provide additional design concepts for boosting the performance of formate-producing catalysts.

14.
J Am Chem Soc ; 143(37): 15298-15308, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34499512

ABSTRACT

To examine ion solvation, exchange, and speciation for minority components in molten salts (MS) typically found as corrosion products, we propose a multimodal approach combining extended X-ray absorption fine structure (EXAFS) spectroscopy, optical spectroscopy, ab initio molecular dynamics (AIMD) simulations, and rate theory of ion exchange. Going beyond conventional EXAFS analysis, our method can accurately quantify populations of different coordination states of ions with highly disordered coordination environments via linear combination fitting of the EXAFS spectra of these coordination states computed from AIMD to the experimental EXAFS spectrum. In a case study of dilute Ni(II) dissolved in the ZnCl2+KCl melts, our method reveals heterogeneous distributions of coordination states of Ni(II) that are sensitive to variations in temperature and melt composition. These results are fully explained by the difference in the chloride exchange dynamics at varied temperatures and melt compositions. This insight will enable a better understanding and control of ion solubility and transport in MS.

15.
J Chem Phys ; 154(10): 105101, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722011

ABSTRACT

The protein folding process often proceeds through partially folded transient states. Therefore, a structural understanding of these disordered states is crucial for developing mechanistic models of the folding process. Characterization of unfolded states remains challenging due to their disordered nature, and incorporating multiple methods is necessary. Combining the time-resolved x-ray solution scattering (TRXSS) signal with molecular dynamics (MD), we are able to characterize transient partially folded states of bovine α-lactalbumin, a model system widely used for investigation of molten globule states, during its unfolding triggered by a temperature jump. We track the unfolding process between 20 µs and 70 ms and demonstrate that it passes through three distinct kinetic states. The scattering signals associated with these transient species are then analyzed with TRXSS constrained MD simulations to produce protein structures that are compatible with the input signals. Without utilizing any experimentally extracted kinetic information, the constrained MD simulation successfully drove the protein to an intermediate molten globule state; signals for two later disordered states are refined to terminal unfolded states. From our examination of the structural characteristics of these disordered states, we discuss the implications disordered states have on the folding process, especially on the folding pathway. Finally, we discuss the potential applications and limitations of this method.


Subject(s)
Lactalbumin/chemistry , Animals , Cattle , Kinetics , Molecular Dynamics Simulation , Protein Conformation , Protein Unfolding , Temperature , X-Ray Diffraction
16.
J Chem Phys ; 152(20): 204115, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32486681

ABSTRACT

In the past few decades, prediction of macromolecular structures beyond the native conformation has been aided by the development of molecular dynamics (MD) protocols aimed at exploration of the energetic landscape of proteins. Yet, the computed structures do not always agree with experimental observables, calling for further development of the MD strategies to bring the computations and experiments closer together. Here, we report a scalable, efficient MD simulation approach that incorporates an x-ray solution scattering signal as a driving force for the conformational search of stable structural configurations outside of the native basin. We further demonstrate the importance of inclusion of the hydration layer effect for a precise description of the processes involving large changes in the solvent exposed area, such as unfolding. Utilization of the graphics processing unit allows for an efficient all-atom calculation of scattering patterns on-the-fly, even for large biomolecules, resulting in a speed-up of the calculation of the associated driving force. The utility of the methodology is demonstrated on two model protein systems, the structural transition of lysine-, arginine-, ornithine-binding protein and the folding of deca-alanine. We discuss how the present approach will aid in the interpretation of dynamical scattering experiments on protein folding and association.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Oligopeptides/chemistry , Solvents/chemistry , Water/chemistry , Molecular Dynamics Simulation , Protein Conformation , Protein Folding , Salmonella typhimurium/enzymology , X-Ray Diffraction
17.
J Phys Chem B ; 123(9): 2016-2021, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30763085

ABSTRACT

Many biomaterials can adapt to changes in the local biological environment (such as pH, temperature, or ionic composition) in order to regulate function or deliver a payload. Such adaptation to environmental perturbation is typically a hierarchical process that begins with a response at a local structural level and then propagates to supramolecular and macromolecular scales. Understanding fast structural dynamics that occur upon perturbation is important for rational design of functional biomaterials. However, few nanosecond time-resolved methods can probe both intra- and intermolecular scales simultaneously with a high structural resolution. Here, we utilize time-resolved X-ray scattering to probe nanosecond to microsecond structural dynamics of poly-l-glutamic acid undergoing protonation via a pH jump initiated by photoexcitation of a photoacid. Our results provide insights into the protonation-induced hierarchical changes in packing of peptide chains, formation of a helical structure, and the associated collapse of the peptide chain.


Subject(s)
Peptides/chemistry , Polyglutamic Acid/chemistry , Protons , Hydrogen-Ion Concentration , Protein Conformation, alpha-Helical , Stereoisomerism , X-Ray Diffraction
18.
Chem Sci ; 10(42): 9788-9800, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-32055348

ABSTRACT

Cytochrome c (cyt c) has long been utilized as a model system to study metalloprotein folding dynamics and the interplay between active site ligation and tertiary structure. However, recent reports regarding the weakness of the native Fe(ii)-S bond (Fe-Met80) call into question the role of the active site ligation in the protein folding process. In order to investigate the interplay between protein conformation and active site structures, we directly tracked the evolution of both during a photolysis-induced folding reaction using X-ray transient absorption spectroscopy and time-resolved X-ray solution scattering techniques. We observe an intermediate Fe-Met80 species appearing on ∼2 µs timescale, which should not be sustained without stabilization from the folded protein structure. We also observe the appearance of a new active site intermediate: a weakly interacting Fe-H2O state. As both intermediates require stabilization of weak metal-ligand interactions, we surmise the existence of a local structure within the unfolded protein that protects and limits the movement of the ligands, similar to the entatic state found in the native cyt c fold. Furthermore, we observe that in some of the unfolded ensemble, the local stabilizing structure is lost, leading to expansion of the unfolded protein structure and misligation to His26/His33 residues.

19.
Photochem Photobiol Sci ; 17(7): 874-882, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29855030

ABSTRACT

The structural dynamics of insulin hexamer dissociation were studied by the photoinduced temperature jump technique and monitored by time-resolved X-ray scattering. The process of hexamer dissociation was found to involve several transient intermediates, including an expanded hexamer and an unstable tetramer. Our findings provide insights into the mechanisms of protien-protein association.


Subject(s)
Insulin/chemistry , Protein Multimerization , Animals , Cattle , Kinetics , Models, Molecular , Scattering, Small Angle , X-Ray Diffraction
20.
J Phys Chem B ; 122(20): 5218-5224, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29709179

ABSTRACT

Direct tracking of protein structural dynamics during folding-unfolding processes is important for understanding the roles of hierarchic structural factors in the formation of functional proteins. Using cytochrome c (cyt c) as a platform, we investigated its structural dynamics during folding processes triggered by local environmental changes (i.e., pH or heme iron center oxidation/spin/ligation states) with time-resolved X-ray solution scattering measurements. Starting from partially unfolded cyt c, a sudden pH drop initiated by light excitation of a photoacid caused a structural contraction in microseconds, followed by active site restructuring and unfolding in milliseconds. In contrast, the reduction of iron in the heme via photoinduced electron transfer did not affect conformational stability at short timescales (<1 ms), despite active site coordination geometry changes. These results demonstrate how different environmental perturbations can change the nature of interaction between the active site and protein conformation, even within the same metalloprotein, which will subsequently affect the folding structural dynamics.


Subject(s)
Cytochromes c/chemistry , Light , Protein Folding , Animals , Heme/chemistry , Models, Molecular , Protein Conformation , Protein Unfolding , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...