Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vet Parasitol Reg Stud Reports ; 50: 101007, 2024 05.
Article in English | MEDLINE | ID: mdl-38644036

ABSTRACT

The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.


Subject(s)
Anaplasma , Dog Diseases , Phylogeny , RNA, Ribosomal , Rhipicephalus sanguineus , Tick Infestations , Animals , Dogs , Hungary , Rhipicephalus sanguineus/microbiology , Dog Diseases/parasitology , Dog Diseases/diagnosis , Tick Infestations/veterinary , Tick Infestations/parasitology , Female , Male , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Rickettsia conorii/isolation & purification , Rickettsia conorii/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Cats/parasitology , Ehrlichia canis/isolation & purification , Ehrlichia canis/genetics
2.
Parasit Vectors ; 16(1): 368, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853498

ABSTRACT

BACKGROUND: Anaplasma phagocytophilum is characterized by a worldwide distribution and distinguished from other Anaplasmataceae by the broadest range of mammalian hosts and high genetic diversity. The role carnivores play in the life cycle of A. phagocytophilum in Europe is uncertain. Currently, only the red fox is considered a suitable reservoir host. In this study, we focused on native and invasive medium-sized carnivore species that live in sympatry and represent the most abundant species of wild carnivores in Poland. METHODS: A total of 275 individual spleen samples from six carnivore species (Vulpes vulpes, Meles meles, Procyon lotor, Nyctereutes procyonoides and Martes spp.) were screened combining nested PCR and sequencing for A. phagocytophilum targeting a partial groEL gene with subsequent phylogenetic analysis inferred by the maximum likelihood method. RESULTS: The DNA of A. phagocytophilum was detected in 16 of 275 individuals (5.8%). Eight unique genetic variants of A. phagocytophilum were obtained. All detected haplotypes clustered in the clade representing European ecotype I. Three variants belonged to the subclade with European human cases together with strains from dogs, foxes, cats, and wild boars. CONCLUSIONS: While carnivores might have a restricted role in the dissemination of A. phagocytophilum due to their relatively low to moderate infection rates, they hold significance as hosts for ticks. Consequently, they could contribute to the transmission of tick-borne infections to humans indirectly, primarily through tick infection. This underscores the potential risk of urbanization for the A. phagocytophilum life cycle, further emphasizing the need for comprehensive understanding of its ecological dynamics.


Subject(s)
Anaplasma phagocytophilum , Carnivora , Mustelidae , Ticks , Swine , Animals , Humans , Dogs , Anaplasma phagocytophilum/genetics , Poland/epidemiology , Phylogeny , Sympatry , Sus scrofa
3.
Parasit Vectors ; 16(1): 219, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408071

ABSTRACT

BACKGROUND: Vector-borne pathogens (VBPs) are a major threat to humans, livestock and companion animals worldwide. The combined effect of climatic, socioeconomic and host composition changes favours the spread of the vectors, together with the expansion of invasive carnivores contributing to the spread of the pathogens. In Europe, the most widespread invasive species of carnivores are raccoons (Procyon lotor) and raccoon dogs (Nyctereutes procyonoides). This study focused on the detection of four major groups of VBPs namely Babesia, Hepatozoon, Anaplasma phagocytophilum and Bartonella in invasive and native carnivores in the Czech Republic, with the emphasis on the role of invasive carnivores in the eco-epidemiology of said VBPs. METHODS: Spleen samples of 84 carnivores of eight species (Canis aureus, Canis lupus, Lynx lynx, P. lotor, Martes foina, Lutra lutra, Mustela erminea and N. procyonoides) were screened by combined nested PCR and sequencing for the above-mentioned VBPs targeting 18S rRNA and cytB in hemoprotozoa, groEL in A. phagocytophilum, and using multilocus genotyping in Bartonella spp. The species determination is supported by phylogenetic analysis inferred by the maximum likelihood method. RESULTS: Out of 84 samples, 44% tested positive for at least one pathogen. Five different species of VBPs were detected in P. lotor, namely Bartonella canis, Hepatozoon canis, Hepatozoon martis, A. phagocytophilum and Bartonella sp. related to Bartonella washoensis. All C. lupus tested positive for H. canis and one for B. canis. Three VBPs (Hepatozoon silvestris, A. phagocytophilum and Bartonella taylorii) were detected in L. lynx for the first time. Babesia vulpes and yet undescribed species of Babesia, not previously detected in Europe, were found in N. procyonoides. CONCLUSIONS: Wild carnivores in the Czech Republic are hosts of several VBPs with potential veterinary and public health risks. Among the studied carnivore species, the invasive raccoon is the most competent host. Raccoons are the only species in our study where all the major groups of studied pathogens were detected. None of the detected pathogen species were previously detected in these carnivores in North America, suggesting that raccoons adapted to local VBPs rather than introduced new ones. Babesia vulpes and one new, probably imported species of Babesia, were found in raccoon dogs.


Subject(s)
Babesia , Carnivora , Lynx , Otters , Animals , Humans , Raccoon Dogs , Raccoons , Czech Republic/epidemiology , Phylogeny , Babesia/genetics
4.
Parasit Vectors ; 16(1): 80, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36855167

ABSTRACT

BACKGROUND: Although the tick-borne pathogen Anaplasma phagocytophilum is currently described as a single species, studies using genetic markers can distinguish groups of variants associated with different hosts, pathogenicity, zoonotic potential and biotic and geographic niches. The objective of our study was to investigate the genetic diversity of A. phagocytophilum and Ixodes ricinus ticks attached to people. METHODS: In collaboration with a commercial diagnostic company, a total of 52 DNA samples were obtained from ticks that tested positive for A. phagocytophilum by quantitative PCR. The genetic profile of each sample was determined using the groEL and ankA genes. Identification of the tick species was confirmed by partial sequencing of the COI subunit and a portion of the TROSPA gene. RESULTS: All 52 ticks were identified as I. ricinus. Two protocols of nested PCR amplifying 1293- and 407-bp fragments of groEL of A. phagocytophilum yielded amplicons of the expected size for all 52 samples. Among all sequences, we identified 10 unique genetic variants of groEL belonging to ecotype I and ecotype II. The analysis targeting ankA was successful in 46 of 52 ticks. Among all sequences, we identified 21 unique genetic variants phylogenetically belonging to three clusters. CONCLUSIONS: Our results indicate that ticks attached to people harbor distant genetic variants of A. phagocytophilum, some of which are not recognized as zoonotic. Further studies are needed to determine the risk of human infection by genetic variants other than those designated as zoonotic.


Subject(s)
Anaplasma phagocytophilum , Ixodes , Humans , Animals , Anaplasma phagocytophilum/genetics , Ecotype , Polymerase Chain Reaction , Social Group
5.
Ticks Tick Borne Dis ; 14(1): 102076, 2023 01.
Article in English | MEDLINE | ID: mdl-36345066

ABSTRACT

The red fox (Vulpes vulpes) is the most widespread free-living carnivore in the world. Over the years, foxes have been recognized as hosts for a number of tick-borne pathogens. However, their role as reservoirs for zoonotic tick-borne diseases is poorly understood. The aim of our study was to investigate tick-borne pathogens in the red fox population in the Czech Republic. Out of 117 red foxes, 110 (94.02%) individuals tested positive for the presence of at least one pathogen by the combined PCR and sequencing approach. Hepatozoon canis was the most frequently detected pathogen (n = 95; 81.2%), followed by Babesia vulpes (n = 75; 64.1%). Babesia canis was not detected in our study. Four (3.42%) red foxes were positive for Candidatus Neoehrlichia sp., 3 (2.56%) for Anaplasma phagocytophilum, and one red fox (0.85%) tested positive for the presence of Ehrlichia sp. DNA. Overall, DNA of spirochetes from the Borrelia burgdorferi s.l. complex was detected in 8.6% of the foxes and B. miyamotoi in 5.12% of the samples. As a carnivore found in all ecosystems of Central Europe, foxes obviously contribute to transmission of tick-borne pathogens such as A. phagocytophilum, B. burgdorferi s.l., and B. myiamotoi. In addition, foxes apparently harbour a community of pathogens, associated with this host in local ecological context, dominated by H. canis and B. vulpes (possibly also Candidatus Neoehrlichia sp.). These species have the potential to spread to the domestic dog population and should be included in the differential diagnosis of febrile diseases with hematologic abnormalities in dogs.


Subject(s)
Foxes , Ticks , Dogs , Animals , Ecosystem , Czech Republic , Europe
6.
Ticks Tick Borne Dis ; 13(2): 101894, 2022 03.
Article in English | MEDLINE | ID: mdl-34996002

ABSTRACT

Hyalomma marginatum and Hyalomma rufipes are important vectors of Crimean-Congo Hemorrhagic Fever Virus (CCHFV) in North Africa and Southern Europe. They are occasionally also reported from Central and Western Europe where they are likely introduced from their natural range by migratory birds. In this study, we report findings and molecular identification of adults and one nymph of H. marginatum and H. rufipes, primarily from horses from different regions of the Czech Republic. While the number of the reported ticks is small, this is likely to be an underrepresentation of the actual number. Due to their vector competence for CCHFV and potential expansion into new areas with a changing climate, surveillance programs in Europe are warranted.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ixodidae , Ticks , Animals , Czech Republic , Horses , Humans
7.
Zoonoses Public Health ; 68(8): 917-925, 2021 12.
Article in English | MEDLINE | ID: mdl-34379883

ABSTRACT

European brown hare (Lepus europaeus Pallas 1778) is a broadly distributed lagomorph species in Europe, recognized as a host for Ixodes ricinus and reservoir of a wide range of pathogens with zoonotic potential. Even though Lepus europaeus represents an important game animal in Central Europe, the data available on Anaplasma phagocytophilum in this lagomorph are scarce. In this study, three populations of brown hare from distinct localities in the Czech Republic were analysed for the presence of Anaplasma phagocytophilum DNA. We used standard qPCR, targeting the msp2 gene and adapted the same assay also for digital droplet PCR. Out of 91 samples, these two methods identified 9 and 12 as positive, respectively. For taxonomic analysis, we amplified the groEL gene from five of six samples that were found positive by both methods. In phylogenetic analyses, this haplotype belongs to ecotype 1, and to the subclade with isolates from cervids and I. ricinus. Our findings underline the importance of correct result interpretation and positivity cut-off set-up for different detection methods of A. phagocytophilum. This bacterium is characterized by a high intraspecific variability and highly sensitive detection itself, is not enough. Detailed molecular typing is necessary to define the zoonotic potential of different strains and their natural reservoirs.


Subject(s)
Anaplasma phagocytophilum , Hares , Ixodes , Anaplasma phagocytophilum/genetics , Animals , Europe , Ixodes/microbiology , Phylogeny
8.
Pathogens ; 10(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205901

ABSTRACT

Free-living animals frequently play a key role in the circulation of various zoonotic vector-borne pathogens. Bacteria of the genus Bartonella are transmitted by blood-feeding arthropods and infect a large range of mammals. Although only several species have been identified as causative agents of human disease, it has been proposed that any Bartonella species found in animals may be capable of infecting humans. Within a wide-ranging survey in various geographical regions of the Czech Republic, cadavers of accidentally killed synurbic mammalian species, namely Eurasian red squirrel (Sciurus vulgaris), European hedgehog (Erinaceus europaeus) and Northern white-breasted hedgehog (Erinaceus roumanicus), were sampled and tested for Bartonella presence using multiple PCR reaction approach targeting several DNA loci. We demonstrate that cadavers constitute an available and highly useful source of biological material for pathogen screening. High infection rates of Bartonella spp., ranging from 24% to 76%, were confirmed for all three tested mammalian species, and spleen, ear, lung and liver tissues were demonstrated as the most suitable for Bartonella DNA detection. The wide spectrum of Bartonella spp. that were identified includes three species with previously validated zoonotic potential, B. grahamii, B. melophagi and B. washoensis, accompanied by 'Candidatus B. rudakovii' and two putative novel species, Bartonella sp. ERIN and Bartonella sp. SCIER.

9.
Microb Ecol ; 82(3): 602-612, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33547531

ABSTRACT

Anaplasma phagocytophilum is an important tick-borne zoonotic agent of human granulocytic anaplasmosis (HGA). In Europe, the Ixodes ticks are the main vector responsible for A. phagocytophilum transmission. A wide range of wild animals is involved in the circulation of this pathogen in the environment. Changes in populations of vertebrates living in different ecosystems impact the ecology of ticks and the epidemiology of tick-borne diseases. In this study, we investigated four species, Western European hedgehog (Erinaceus europaeus), northern white-breasted hedgehog (Erinaceus roumanicus), Eurasian red squirrel (Sciurus vulgaris), and the common blackbird (Turdus merula), to describe their role in the circulation of A. phagocytophilum in urban and periurban ecosystems. Ten different tissues were collected from cadavers of the four species, and blood and ear/skin samples from live blackbirds and hedgehogs. Using qPCR, we detected a high rate of A. phagocytophilum: Western European hedgehogs (96.4%), northern white-breasted hedgehogs (92.9%), Eurasian red squirrels (60%), and common blackbirds (33.8%). In the groEL gene, we found nine genotypes belonging to three ecotypes; seven of the genotypes are associated with HGA symptoms. Our findings underline the role of peridomestic animals in the ecology of A. phagocytophilum and indicate that cadavers are an important source of material for monitoring zoonotic pathogens. Concerning the high prevalence rate, all investigated species play an important role in the circulation of A. phagocytophilum in municipal areas; however, hedgehogs present the greatest anaplasmosis risk for humans. Common blackbirds and squirrels carry different A. phagocytophilum variants some of which are responsible for HGA.


Subject(s)
Anaplasma phagocytophilum , Ixodes , Tick-Borne Diseases , Anaplasma phagocytophilum/genetics , Animals , Ecosystem , Hedgehogs , Humans
10.
Ticks Tick Borne Dis ; 12(1): 101558, 2021 01.
Article in English | MEDLINE | ID: mdl-33010631

ABSTRACT

The wild boar (Sus scrofa) population has increased dramatically over the last decades throughout Europe and it has become a serious pest. In addition, the common habitat of wild boar and of the tick, Ixodes ricinus, indicates the potential of wild boar to play a role in epidemiology of epizootic and zoonotic tick-borne pathogens, including Anaplasma phagocytophilum. In Europe, epidemiological cycles and reservoirs of A. phagocytophilum, including its zoonotic haplotypes, are poorly understood. In this study, we focused on detection and further genetic characterization of A. phagocytophilum and piroplasmids in 550 wild boars from eleven districts of Moravia and Silesia in the Czech Republic. Using highly sensitive nested PCR targeting the groEL gene, the DNA of A. phagocytophilum was detected in 28 wild boars (5.1 %) representing six unique haplotypes. The dominant haplotype was found in 21 samples from 7 different districts. All detected haplotypes clustered in the largest clade representing the European ecotype I and the dominant haplotype fell to the subclade with the European human cases and strains from dogs and horses. Nested PCR targeting the variable region of the 18S rRNA gene of piroplasmids resulted in one positive sample with 99.8 % sequence identity to Babesia divergens. The presence of these two pathogens that are primarily circulated by I. ricinus confirms the local participation of wild boar in the host spectrum of this tick and warrants experimental studies to address wild boar as a reservoir of zoonotic haplotypes of A. phagocytophilum.


Subject(s)
Anaplasma phagocytophilum/isolation & purification , Anaplasmosis/epidemiology , Babesiosis/epidemiology , Disease Reservoirs/veterinary , Genetic Variation , Piroplasmida/isolation & purification , Swine Diseases/epidemiology , Anaplasma phagocytophilum/genetics , Anaplasmosis/microbiology , Animals , Babesiosis/parasitology , Czech Republic/epidemiology , Disease Reservoirs/parasitology , Genes, Bacterial , Genes, Protozoan , Piroplasmida/genetics , Prevalence , Sus scrofa , Swine , Swine Diseases/microbiology , Swine Diseases/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...