Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 23(10): 2414-27, 2014 May.
Article in English | MEDLINE | ID: mdl-24712442

ABSTRACT

Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population differentiation. These events may follow abundance declines due to natural or anthropogenic perturbations, where translocations may be an effective conservation strategy to increase population size. American black bears (Ursus americanus) were nearly extirpated from the Central Interior Highlands, USA by 1920. In an effort to restore bears, 254 individuals were translocated from Minnesota, USA, and Manitoba, Canada, into the Ouachita and Ozark Mountains from 1958 to 1968. Using 15 microsatellites and mitochondrial haplotypes, we observed contemporary genetic diversity and differentiation between the source and supplemented populations. We inferred four genetic clusters: Source, Ouachitas, Ozarks, and a cluster in Missouri where no individuals were translocated. Coalescent models using approximate Bayesian computation identified an admixture model as having the highest posterior probability (0.942) over models where the translocation was unsuccessful or acted as a founder event. Nuclear genetic diversity was highest in the source (AR = 9.11) and significantly lower in the translocated populations (AR = 7.07-7.34; P = 0.004). The Missouri cluster had the lowest genetic diversity (AR = 5.48) and served as a natural experiment showing the utility of translocations to increase genetic diversity following demographic bottlenecks. Differentiation was greater between the two admixed populations than either compared to the source, suggesting that genetic drift acted strongly over the eight generations since the translocation. The Ouachitas and Missouri were previously hypothesized to be remnant lineages. We observed a pretranslocation remnant signature in Missouri but not in the Ouachitas.


Subject(s)
Genetic Drift , Genetic Variation , Genetics, Population , Ursidae/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Founder Effect , Haplotypes , Microsatellite Repeats , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , United States
2.
J Wildl Dis ; 44(2): 341-50, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18436666

ABSTRACT

Because there is a paucity of information on the mineral requirements of free-ranging deer, data are needed from clinically healthy deer to provide a basis for the diagnosis of mineral deficiencies. To our knowledge, no reports are available on baseline hepatic mineral concentrations from sympatric white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) using different habitats in the Northern Great Plains. We assessed variation in hepatic minerals of female white-tailed deer (n = 42) and mule deer (n = 41). Deer were collected in February and August 2002 and 2003 from study areas in Custer and Pennington Counties, South Dakota, in and adjacent to a wildfire burn. Hepatic samples were tested for levels (parts per million; ppm) of aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium (Se), sodium (Na), sulfur (S), thalium (Tl), and zinc (Zn). We predicted that variability in element concentrations would occur between burned and unburned habitat due to changes in plant communities and thereby forage availability. We determined that Zn, Cu, and Ba values differed (P

Subject(s)
Burns/veterinary , Deer/metabolism , Liver/chemistry , Metals/analysis , Minerals/analysis , Nutritional Requirements , Reproduction/physiology , Animal Nutritional Physiological Phenomena , Animals , Animals, Wild , Burns/complications , Deer/physiology , Female , Lactation/physiology , Pregnancy , South Dakota
3.
Environ Monit Assess ; 137(1-3): 75-84, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17458511

ABSTRACT

Disturbance by military maneuvers over short and long time scales may have differential effects on grassland communities. We assessed small mammals as indicators of disturbance by military maneuvers in a mixed prairie in southern Oklahoma USA. We examined sites on two soil series, Foard and Lawton, across a gradient of disturbance intensity. A MANOVA showed that abundance of small mammals was associated (p = 0.03) with short-term (cover of vehicle tracks) disturbance but was not associated (p = 0.12) with long-term (loss of soil organic carbon, SOC) disturbance intensity. At the individual species level, Sigmodon hispidus (cotton rat) and Peromyscus maniculatus (deer mouse) occurred across all levels of disturbance and in both soil types. Only P. maniculatus abundance changed (p < 0.01) with short-term disturbance and increased by about one individual per 5% of additional track-cover. Abundance of P. maniculatus also increased (p = 0.04) by about three individuals per 1% increase in soil carbon. Chaetodipus hispidus (hispid pocket mouse) and Reithrodontomys fulvescens (fulvous harvest mouse) only occurred in single soil types limiting their potential as more general indicators. Abundance of P. maniculatus was positively related to shifts in plant species composition and likely reflected changes in vegetation structure (i.e. litter depth) and forage availability resulting from disturbance. Peromyscus maniculatus may be a useful biological indicator of ecosystem change because it responded predictably to both long-term and short-term disturbance and, when coupled with soil, plant, and disturbance history variables, can reveal land condition trends.


Subject(s)
Mammals , Motor Vehicles , Soil/analysis , Animals , Biodiversity , Carbon , Environmental Monitoring , Military Personnel , Oklahoma
4.
Ecol Appl ; 16(5): 1706-16, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17069365

ABSTRACT

In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity.


Subject(s)
Agriculture , Birds/physiology , Conservation of Natural Resources/methods , Ecosystem , Fires , Animals , Cattle , Poaceae , Population Density , Population Dynamics
5.
Environ Manage ; 36(6): 849-61, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16215649

ABSTRACT

Loss of grassland species resulting from activities such as off-road vehicle use increases the need for models that predict effects of anthropogenic disturbance. The relationship of disturbance by military training to plant species richness and composition on two soils (Foard and Lawton) in a mixed prairie area was investigated. Track cover (cover of vehicle disturbance to the soil) and soil organic carbon were selected as measures of short- and long-term disturbance, respectively. Soil and vegetation data, collected in 1-m2 quadrats, were analyzed at three spatial scales (60, 10, and 1 m2). Plant species richness peaked at intermediate levels of soil organic carbon at the 10-m2 and 1-m2 spatial scales on both the Lawton and Foard soils, and at intermediate levels of track cover at all three spatial scales on the Foard soil. Species composition differed across the disturbance gradient on the Foard soil but not on the Lawton soil. Disturbance increased total plant species richness on the Foard soil. The authors conclude that disturbance up to intermediate levels can be used to maintain biodiversity by enriching the plant species pool.


Subject(s)
Biodiversity , Environment , Magnoliopsida/classification , Military Personnel , Soil/analysis , Carbon/analysis , Environmental Monitoring , Humans , Motor Vehicles , Oklahoma
6.
J Wildl Dis ; 41(2): 395-400, 2005 Apr.
Article in English | MEDLINE | ID: mdl-16107675

ABSTRACT

From January 1999 to April 2002, 14 free-ranging elk were darted with a mixture of Telazol reconstituted with xylazine hydrochloride (HCl) in a forested habitat in southwestern Oklahoma and north-central Arkansas. Elk were darted from ground blinds, tree stands, or a vehicle at distances of 14-46 m and were recovered 37-274 m from the dart site. Elk were located using radiotelemetry with 3-cc disposable Pneu-dart transmitter darts. Mean+/-SD dose of Telazol and xylazine HCl was 590+/-192 mg/ml and 276+/-153 mg/ml, respectively, and mean time to standing after injection of reversal agent was 27 min (range: 1-65 min). The combination of Telazol and xylazine HCl successfully immobilized free-ranging elk, and transmitter-equipped darts permitted successful location of sedated elk by two people in areas of dense forest cover. The dose required to sedate elk appeared to vary depending on physiology and behavior, but no drug-induced mortality occurred despite the wide variance in the doses administered. We recommend 500 mg Telazol reconstituted with 300 mg xylazine HCl as an initial dose for a >or=200 kg elk. If needed to achieve full sedation, up to 3 additional ml of the mixture may be administered without adverse effects.


Subject(s)
Anesthetics/administration & dosage , Deer/physiology , Immobilization/veterinary , Telemetry/veterinary , Tiletamine/administration & dosage , Xylazine/administration & dosage , Zolazepam/administration & dosage , Anesthetics/adverse effects , Anesthetics, Combined/administration & dosage , Animals , Animals, Wild , Dose-Response Relationship, Drug , Drug Combinations , Female , Immobilization/methods , Male , Telemetry/methods , Tiletamine/adverse effects , Time Factors , Xylazine/adverse effects , Zolazepam/adverse effects
7.
Oecologia ; 144(3): 447-55, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15942760

ABSTRACT

The contribution of small mammals to nitrogen cycling could have repercussions for the producer community in the maintaining or perhaps magnifying of nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) of small mammals in an old-field ecosystem and estimate the amount of fecal and urinary nitrogen deposited annually. To address this objective, we used models from laboratory studies and combined these with data from field studies to estimate dietary nitrogen and monthly and annual nitrogen outputs from fecal and urine deposition of five rodent species. The models accounted for monthly fluctuations in density and biomass of small-mammal populations. We estimated that the minimal amount of nitrogen deposited by rodents was 1.0 (0.9-1.1) and 2.7 (2.6-2.9) kg Nha(-1) year(-1) from feces and urine, respectively, for a total contribution of 3.7 (3.5-4.0) kg Nha(-1) year(-1). Hispid cotton rats (Sigmodon hispidus) accounted for >75% of the total nitrogen output by small mammals. Our estimates of annual fecal and urinary nitrogen deposited by rodents were comparable to nitrogen deposits by larger herbivores and other nitrogen fluxes in grassland ecosystems and should be considered when assessing the potential effects of herbivory on terrestrial nitrogen cycles.


Subject(s)
Ecosystem , Feces/chemistry , Mammals/metabolism , Models, Biological , Nitrogen/analysis , Nitrogen/urine , Animal Nutritional Physiological Phenomena , Animals , Mammals/urine , Oklahoma , Regression Analysis
8.
Article in English | MEDLINE | ID: mdl-14613786

ABSTRACT

We examined effects of supplementation of food quantity and quality (=enhanced methionine) on hematologic and immunologic parameters of wild, but enclosed, adult male cotton rats (Sigmodon hispidus) in north-central Oklahoma. Sheet metal enclosures were stocked with a high density of wild-caught cotton rats (160 animals/ha) and randomly assigned a treatment of no supplementation, mixed-ration supplementation or methionine-enhanced supplementation. Aside from small increases in counts of red blood cells and hematocrit levels, most indices of erythrocytic characteristics were not affected by supplementation with the mixed-ration or enhanced methionine. In contrast, platelet counts were highest in mixed-ration and methionine treatments and counts of total white blood cells were highest with methionine supplementation, albeit relative proportions of different leukocytes did not differ among treatments. Immunologically, neither delayed-type hypersensitivity response nor hemolytic-complement activity differed among treatments. Supplementation of food quantity and quality did not broadly affect hematologic parameters and immune function of male cotton rats, but enhanced platelet and leukocyte counts may confer advantages to overall health. Clarification of the role of such effects on population limitation or regulation requires additional research.


Subject(s)
Dietary Supplements , Immune System/drug effects , Immune System/immunology , Methionine/pharmacology , Sigmodontinae/blood , Sigmodontinae/immunology , Animals , Blood Cell Count , Erythrocyte Count , Hematocrit , Leukocyte Count , Male , Oklahoma , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...