Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1010216, 2022.
Article in English | MEDLINE | ID: mdl-36451808

ABSTRACT

The COVID-19 pandemic continues to challenge the capacities of hospital ICUs which currently lack the ability to identify prospectively those patients who may require extended management. In this study of 90 ICU COVID-19 patients, we evaluated serum levels of four cytokines (IL-1ß, IL-6, IL-10 and TNFα) as well as standard clinical and laboratory measurements. On 42 of these patients (binned into Initial and Replication Cohorts), we further performed CyTOF-based deep immunophenotyping of peripheral blood mononuclear cells with a panel of 38 antibodies. All measurements and patient samples were taken at time of ICU admission and retrospectively linked to patient clinical outcomes through statistical approaches. These analyses resulted in the definition of a new measure of patient clinical outcome: patients who will recover after short ICU stays (< 6 days) and those who will subsequently die or recover after long ICU stays (≥6 days). Based on these clinical outcome categories, we identified blood prognostic biomarkers that, at time of ICU admission, prospectively distinguish, with 91% sensitivity and 91% specificity (positive likelihood ratio 10.1), patients in the two clinical outcome groups. This is achieved through a tiered evaluation of serum IL-10 and targeted immunophenotyping of monocyte subsets, specifically, CD11clow classical monocytes. Both immune biomarkers were consistently elevated ( ≥15 pg/ml and ≥2.7 x107/L for serum IL-10 and CD11clow classical monocytes, respectively) in those patients who will subsequently die or recover after long ICU stays. This highly sensitive and specific prognostic test could prove useful in guiding clinical resource allocation.


Subject(s)
COVID-19 , Humans , Interleukin-10 , Leukocytes, Mononuclear , Pandemics , Prognosis , Retrospective Studies , CD11c Antigen , Intensive Care Units
2.
Blood Adv ; 4(21): 5362-5372, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33137203

ABSTRACT

Innate lymphoid cells (ILCs) are a recently identified subset of leukocytes that play a central role in pathogen surveillance and resistance, modulation of immune response, and tissue repair. They are remarkably similar to CD4+ T-helper subsets in terms of function and transcription factors required for their development but are distinguished by their lack of antigen-specific receptors. Despite their similarities, the absence of a surface T-cell receptor (TCR) and presence of ILCs and precursors in adult bone marrow has led to speculation that ILCs and T cells develop separately from lineages that branch at the point of precursors within the bone marrow. Considering the common lineage markers and effector cytokine profiles shared between ILCs and T cells, it is surprising that the status of the TCR loci in ILCs was not fully explored at the time of their discovery. Here, we demonstrate that a high proportion of peripheral tissue ILC2s have TCRγ chain gene rearrangements and TCRδ locus deletions. Detailed analyses of these loci show abundant frameshifts and premature stop codons that would encode nonfunctional TCR proteins. Collectively, these data argue that ILC2 can develop from T cells that fail to appropriately rearrange TCR genes, potentially within the thymus.


Subject(s)
Immunity, Innate , Precursor Cells, T-Lymphoid , Leukocytes , Lymphocytes
3.
J Immunol ; 174(8): 4768-78, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15814702

ABSTRACT

Most primates, including humans, are chronically infected with cospecifically evolved, potentially pathogenic CMV. Abs that bind a 10-aa linear epitope (antigenic determinant 2 site 1) within the extracellular domain of human CMV glycoprotein B neutralize viral infectivity. In this study, we show that genes generated by recombinations involving two well-conserved human germline V elements (IGHV3-30 and IGKV3-11), and IGHJ4, encode primary Ig molecules that bind glycoprotein B at this key epitope. These particular V(H), J(H), and V(kappa) genes enable humans to generate through recombination and N nucleotide addition, a useful frequency of primary Igs that efficiently target this critical site on human CMV and thus confer an innate foundation for a specific adaptive response to this pathogen.


Subject(s)
Antibodies, Viral/metabolism , Cytomegalovirus/immunology , Immunoglobulins/metabolism , Adaptation, Physiological , Amino Acid Sequence , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antigens, Viral/genetics , Base Sequence , Codon/genetics , DNA, Complementary/genetics , Humans , Immunity, Innate , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulins/chemistry , Immunoglobulins/genetics , In Vitro Techniques , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...