Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 181: 272-281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685460

ABSTRACT

Semiflexible fiber gels such as collagen and fibrin have unique nonlinear mechanical properties that play an important role in tissue morphogenesis, wound healing, and cancer metastasis. Optical tweezers microrheology has greatly contributed to the understanding of the mechanics of fibrous gels at the microscale, including its heterogeneity and anisotropy. However, the explicit relationship between micromechanical properties and gel deformation has been largely overlooked. We introduce a unique gel-stretching apparatus and employ it to study the relationship between microscale strain and stiffening in fibrin and collagen gels, focusing on the development of anisotropy in the gel. We find that gels stretched by as much as 15 % stiffen significantly both in parallel and perpendicular to the stretching axis, and that the parallel axis is 2-3 times stiffer than the transverse axis. We also measure the stiffening and anisotropy along bands of aligned fibers created by aggregates of cancer cells, and find similar effects as in gels stretched with the tensile apparatus. Our results illustrate that the extracellular microenvironment is highly sensitive to deformation, with implications for tissue homeostasis and pathology. STATEMENT OF SIGNIFICANCE: The inherent fibrous architecture of the extracellular matrix (ECM) gives rise to unique strain-stiffening mechanics. The micromechanics of fibrous networks has been studied extensively, but the deformations involved in its stiffening at the microscale were not quantified. Here we introduce an apparatus that enables measuring the deformations in the gel as it is being stretched while simultaneously using optical tweezers to measure its microscale anisotropic stiffness. We reveal that fibrin and collagen both stiffen dramatically already at ∼10 % deformation, accompanied by the emergence of significant, yet moderate anisotropy. We measure similar stiffening and anisotropy in the matrix remodeled by the tensile apparatus to those found between cancer cell aggregates. Our results emphasize that small strains are enough to introduce substantial stiffening and anisotropy. These have been shown to result in directional cell migration and enhanced force propagation, and possibly control processes like morphogenesis and cancer metastasis.


Subject(s)
Fibrin , Gels , Rheology , Anisotropy , Gels/chemistry , Fibrin/chemistry , Humans , Tensile Strength , Stress, Mechanical , Collagen/chemistry , Animals
2.
Biofabrication ; 16(1)2023 11 16.
Article in English | MEDLINE | ID: mdl-37906963

ABSTRACT

Control over the organization of cells at the microscale level within supporting biomaterials can push forward the construction of complex tissue architectures for tissue engineering applications and enable fundamental studies of how tissue structure relates to its function. While cells patterning on 2D substrates is a relatively established and available procedure, micropatterning cells in biomimetic 3D hydrogels has been more challenging, especially with micro-scale resolution, and currently relies on sophisticated tools and protocols. We present a robust and accessible 'peel-off' method to micropattern large arrays of individual cells or cell-clusters of precise sizes in biological 3D hydrogels, such as fibrin and collagen gels, with control over cell-cell separation distance and neighboring cells position. We further demonstrate partial control over cell position in thez-dimension by stacking two layers in varying distances between the layers. To demonstrate the potential of the micropatterning gel platform, we study the matrix-mediated mechanical interaction between array of cells that are accurately separated in defined distances. A collective process of intense cell-generated densified bands emerging in the gel between near neighbors was identified, along which cells preferentially migrate, a process relevant to tissue morphogenesis. The presented 3D gel micropatterning method can be used to reveal fundamental morphogenetic processes, and to reconstruct any tissue geometry with micrometer resolution in 3D biomimetic gel environments, leveraging the engineering of tissues in complex architectures.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Tissue Engineering/methods , Biocompatible Materials , Cell Communication , Collagen
3.
Commun Biol ; 6(1): 811, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537232

ABSTRACT

Cells sense, manipulate and respond to their mechanical microenvironment in a plethora of physiological processes, yet the understanding of how cells transmit, receive and interpret environmental cues to communicate with distant cells is severely limited due to lack of tools to quantitatively infer the complex tangle of dynamic cell-cell interactions in complicated environments. We present a computational method to systematically infer and quantify long-range cell-cell force transmission through the extracellular matrix (cell-ECM-cell communication) by correlating ECM remodeling fluctuations in between communicating cells and demonstrating that these fluctuations contain sufficient information to define unique signatures that robustly distinguish between different pairs of communicating cells. We demonstrate our method with finite element simulations and live 3D imaging of fibroblasts and cancer cells embedded in fibrin gels. While previous studies relied on the formation of a visible fibrous 'band' extending between cells to inform on mechanical communication, our method detected mechanical propagation even in cases where visible bands never formed. We revealed that while contractility is required, band formation is not necessary, for cell-ECM-cell communication, and that mechanical signals propagate from one cell to another even upon massive reduction in their contractility. Our method sets the stage to measure the fundamental aspects of intercellular long-range mechanical communication in physiological contexts and may provide a new functional readout for high content 3D image-based screening. The ability to infer cell-ECM-cell communication using standard confocal microscopy holds the promise for wide use and democratizing the method.


Subject(s)
Extracellular Matrix , Mechanical Phenomena , Extracellular Matrix/physiology , Fibroblasts
4.
Small Methods ; 7(1): e2201070, 2023 01.
Article in English | MEDLINE | ID: mdl-36408763

ABSTRACT

Biological tissues experience various stretch gradients which act as mechanical signaling from the extracellular environment to cells. These mechanical stimuli are sensed by cells, triggering essential signaling cascades regulating cell migration, differentiation, and tissue remodeling. In most previous studies, a simple, uniform stretch to 2D elastic substrates has been applied to analyze the response of living cells. However, induction of nonuniform strains in controlled gradients, particularly in biomimetic 3D hydrogels, has proven challenging. In this study, 3D fibrin hydrogels of manipulated geometry are stretched by a silicone carrier to impose programmable strain gradients along different chosen axes. The resulting strain gradients are analyzed and compared to finite element simulations. Experimentally, the programmed strain gradients result in similar gradient patterns in fiber alignment within the gels. Additionally, temporal changes in the orientation of fibroblast cells embedded in the stretched fibrin gels correlate to the strain and fiber alignment gradients. The experimental and simulation data demonstrate the ability to custom-design mechanical gradients in 3D biological hydrogels and to control cell alignment patterns. It provides a new technology for mechanobiology and tissue engineering studies.


Subject(s)
Hydrogels , Tissue Engineering , Cell Movement , Cell Differentiation , Fibrin
5.
Small ; 19(4): e2202573, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36433830

ABSTRACT

Fibrous hydrogels are a key component of soft animal tissues. They support cellular functions and facilitate efficient mechanical communication between cells. Due to their nonlinear mechanical properties, fibrous materials display non-trivial force propagation at the microscale, that is enhanced compared to that of linear-elastic materials. In the body, tissues are constantly subjected to external loads that tense or compress them, modifying their micro-mechanical properties into an anisotropic state. However, it is unknown how force propagation is modified by this isotropic-to-anisotropic transition. Here, force propagation in tensed fibrin hydrogels is directly measured. Local perturbations are induced by oscillating microspheres using optical tweezers. 1-point and 2-point microrheology are combined to simultaneously measure the shear modulus and force propagation. A mathematical framework to quantify anisotropic force propagation trends is suggested. Results show that force propagation becomes anisotropic in tensed gels, with, surprisingly, stronger response to perturbations perpendicular to the axis of tension. Importantly, external tension can also increase the range of force transmission. Possible implications and future directions for research are discussed. These results suggest a mechanism for favored directions of mechanical communication between cells in a tissue under external loads.

6.
ACS Biomater Sci Eng ; 8(12): 5155-5170, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36346743

ABSTRACT

The extracellular matrix (ECM) is a fibrous network supporting biological cells and provides them a medium for interaction. Cells modify the ECM by applying traction forces, and these forces can propagate to long ranges and establish a mechanism of mechanical communication between neighboring cells. Previous studies have mainly focused on analysis of static force transmission across the ECM. In this study, we explore the plausibility of dynamic mechanical interaction, expressed as vibrations or abrupt fluctuations, giving rise to elastic waves propagating along ECM fibers. We use a numerical mass-spring model to simulate the longitudinal and transversal waves propagating along a single ECM fiber and across a 2D random fiber network. The elastic waves are induced by an active contracting cell (signaler) and received by a passive neighboring cell (receiver). We show that dynamic wave propagation may amplify the signal at the receiver end and support up to an order of magnitude stronger mechanical cues and longer-ranged communication relative to static transmission. Also, we report an optimal impulse duration corresponding to the most effective transmission, as well as extreme fast impulses, in which the waves are encaged around the active cell and do not reach the neighboring cell, possibly due to the Anderson localization effect. Finally, we also demonstrate that extracellular fluid viscosity reduces, but still allows, dynamic propagation along embedded ECM fibers. Our results motivate future biological experiments in mechanobiology to investigate, on the one hand, the mechanosensitivity of cells to dynamic forces traveling and guided by the ECM and, on the other hand, the impact of ECM architecture and remodeling on dynamic force transmission and its spectral filtering, dispersion, and decay.


Subject(s)
Extracellular Matrix , Models, Biological , Cell Communication , Mechanical Phenomena , Sound
7.
Sci Rep ; 11(1): 11843, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088909

ABSTRACT

Extracellular matrix (ECM) provides structural support for cell growth, attachments and proliferation, which greatly impact cell fate. Marine macroalgae species Ulva sp. and Cladophora sp. were selected for their structural variations, porous and fibrous respectively, and evaluated as alternative ECM candidates. Decellularization-recellularization approach was used to fabricate seaweed cellulose-based scaffolds for in-vitro mammalian cell growth. Both scaffolds were confirmed nontoxic to fibroblasts, indicated by high viability for up to 40 days in culture. Each seaweed cellulose structure demonstrated distinct impact on cell behavior and proliferation rates. The Cladophora sp. scaffold promoted elongated cells spreading along its fibers' axis, and a gradual linear cell growth, while the Ulva sp. porous surface, facilitated rapid cell growth in all directions, reaching saturation at week 3. As such, seaweed-cellulose is an environmentally, biocompatible novel biomaterial, with structural variations that hold a great potential for diverse biomedical applications, while promoting aquaculture and ecological agenda.


Subject(s)
Cellulose/chemistry , Chlorophyta/metabolism , Seaweed , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Cell Proliferation , DNA/analysis , Ecology , Extracellular Matrix/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Mice , Microscopy, Electron, Scanning , NIH 3T3 Cells , Oxazines , Porosity , Ulva/metabolism , Xanthenes
8.
J Mech Behav Biomed Mater ; 119: 104526, 2021 07.
Article in English | MEDLINE | ID: mdl-33894525

ABSTRACT

Cardiovascular Diseases (CVDs) are the leading cause of death worldwide. Approximately 31% of all global deaths are caused by CVDs, of which 42% are attributable to coronary artery disease (CAD). CAD is characterized by a narrowing of arteries that restricts the normal blood flow. Over time, surgical intervention is required in severe cases of occlusions and includes implantation of autologous vessels. Today synthetic grafts are used successfully as replacements for blood vessels with a diameter larger than 6 mm. However, they often fail as small-diameter blood vessel replacements. This study introduces a new biocomposite material system consisting of unique and long (cm-scale) collagen fibers derived from soft corals embedded within an alginate hydrogel matrix. The new biocomposite layers were used to fabricate grafts, towards developing a new class of tissue-engineered small-diameter blood vessels. These constructs consisted of both circumferentially and longitudinally oriented collagen fibers. The mechanical properties of the grafts were investigated via a new experimental setup constructed in our lab for this purpose, which applied internal pressure levels of 0-300 mmHg. Similar to native coronary arteries, the biocomposite tubes demonstrated a compliance of 4.88 ± 0.99%/100 mmHg for a physiologic pressure range of 80-120 mmHg. Furthermore, a numerical finite element simulation model is proposed to generate the overall mechanical response of the construct. It is composed of axial and circumferential fibers embedded within the continuum alginate elements. Good prediction is demonstrated when compared with the measured pressure-strain response. Moreover, we examined biocompatibility and cell growth on the collagen fibers. Fibroblast cells proliferated during the experiment that lasted for 32 days and showed aligned configuration with the collagen fiber orientation. The novelty of this study is manifested in the use of naturally derived coral-based long collagen fibers for the development of a new class of tissue-engineered grafts. The proposed novel biocomposite graft demonstrated both mechanical and biological compatibility and can be further developed for small-diameter blood-vessel replacement.


Subject(s)
Anthozoa , Vascular Grafting , Animals , Biomimetics , Blood Vessel Prosthesis , Collagen , Tissue Engineering
9.
Biomolecules ; 11(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672379

ABSTRACT

Fibrin hydrogel is a central biological material in tissue engineering and drug delivery applications. As such, fibrin is typically combined with cells and biomolecules targeted to the regenerated tissue. Previous studies have analyzed the release of different molecules from fibrin hydrogels; however, the effect of embedded cells on the release profile has yet to be quantitatively explored. This study focused on the release of Fluorescein isothiocyanate (FITC)-dextran (FD) 250 kDa from fibrin hydrogels, populated with different concentrations of fibroblast or endothelial cells, during a 48-h observation period. The addition of cells to fibrin gels decreased the overall release by a small percentage (by 7-15% for fibroblasts and 6-8% for endothelial cells) relative to acellular gels. The release profile was shown to be modulated by various cellular activities, including gel degradation and physical obstruction to diffusion. Cell-generated forces and matrix deformation (i.e., densification and fiber alignment) were not found to significantly influence the release profiles. This knowledge is expected to improve fibrin integration in tissue engineering and drug delivery applications by enabling predictions and ways to modulate the release profiles of various biomolecules.


Subject(s)
Dextrans/chemistry , Drug Delivery Systems , Fibrin/chemistry , Fluorescein-5-isothiocyanate/chemistry , Animals , Cell Survival/drug effects , Endothelial Cells/drug effects , Extracellular Matrix/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Heterocyclic Compounds, 4 or More Rings/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Hydrogels/chemistry , Mice , Models, Theoretical , NIH 3T3 Cells , Regeneration , Regenerative Medicine/methods , Tissue Engineering/methods
10.
Tissue Eng Part A ; 27(3-4): 187-200, 2021 02.
Article in English | MEDLINE | ID: mdl-32524890

ABSTRACT

There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.


Subject(s)
Anthozoa , Tissue Scaffolds , Animals , Biocompatible Materials , Collagen , Tissue Engineering
11.
J Vis Exp ; (166)2020 12 04.
Article in English | MEDLINE | ID: mdl-33346198

ABSTRACT

External forces are an important factor in tissue formation, development, and maintenance. The effects of these forces are often studied using specialized in vitro stretching methods. Various available systems use 2D substrate-based stretchers, while the accessibility of 3D techniques to strain soft hydrogels, is more restricted. Here, we describe a method that allows external stretching of soft hydrogels from their circumference, using an elastic silicone strip as the sample carrier. The stretching system utilized in this protocol is constructed from 3D-printed parts and low-cost electronics, making it simple and easy to replicate in other labs. The experimental process begins with polymerizing thick (>100 µm) soft fibrin hydrogels (Elastic Modulus of ~100 Pa) in a cut-out at the center of a silicone strip. Silicone-gel constructs are then attached to the printed-stretching device and placed on the confocal microscope stage. Under live microscopy the stretching device is activated, and the gels are imaged at various stretch magnitudes. Image processing is then used to quantify the resulting gel deformations, demonstrating relatively homogenous strains and fiber alignment throughout the gel's 3D thickness (Z-axis). Advantages of this method include the ability to strain extremely soft hydrogels in 3D while executing in situ microscopy, and the freedom to manipulate the geometry and size of the sample according to the user's needs. Additionally, with proper adaptation, this method can be used to stretch other types of hydrogels (e.g., collagen, polyacrylamide or polyethylene glycol) and can allow for analysis of cells and tissue response to external forces under more biomimetic 3D conditions.


Subject(s)
Hydrogels/chemistry , Imaging, Three-Dimensional , Microscopy , Elastic Modulus , Fibrin/chemistry , Fibrinogen/chemistry , Finite Element Analysis , Polymerization , Silicones/chemistry , Software , Thrombin/chemistry , User-Computer Interface
12.
PLoS One ; 15(11): e0240127, 2020.
Article in English | MEDLINE | ID: mdl-33151976

ABSTRACT

It is well recognized that isolated cardiac muscle cells beat in a periodic manner. Recently, evidence indicates that other, non-muscle cells, also perform periodic motions that are either imperceptible under conventional lab microscope lens or practically not easily amenable for analysis of oscillation amplitude, frequency, phase of movement and its direction. Here, we create a real-time video analysis tool to visually magnify and explore sub-micron rhythmic movements performed by biological cells and the induced movements in their surroundings. Using this tool, we suggest that fibroblast cells perform small fluctuating movements with a dominant frequency that is dependent on their surrounding substrate and its stiffness.


Subject(s)
Cell Movement/physiology , Image Processing, Computer-Assisted/methods , Intravital Microscopy/methods , Microscopy, Video/methods , Time-Lapse Imaging/methods , 3T3 Cells , Animals , Image Processing, Computer-Assisted/instrumentation , Intravital Microscopy/instrumentation , Mice , Microscopy, Video/instrumentation , Time-Lapse Imaging/instrumentation
13.
Mol Biol Cell ; 31(14): 1474-1485, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32374653

ABSTRACT

When seeded in fibrous gels, pairs of cells or cell aggregates can induce bands of deformed gel, extending to surprisingly long distances in the intercellular medium. The formation of bands has been previously shown and studied in collagen systems. In this study, we strive to further our understanding of this fundamental mechanical mechanism in fibrin, a key element in wound healing and angiogenesis processes. We embedded fibroblast cells in 3D fibrin gels, and monitored band formation by real-time confocal microscopy. Quantitative dynamic analysis of band formation revealed a gradual increase in fiber density and alignment between pairs of cells. Such intercellular bands extended into a large-scale network of mechanically connected cells, in which the connected cells exhibited a more spread morphology than the isolated cells. Moreover, computational modeling demonstrated that the direction of cell-induced force triggering band formation can be applied in a wide range of angles relative to a neighboring cell. Our findings indicate that long-range mechanical coupling between cells is an important mechanism in regulating multicellular processes in reconstituted fibrin gels. As such, it should motivate exploration of this mechanism in studies in vivo, in wound healing or angiogenesis, in which fibrin is contracted by fibroblast cells.


Subject(s)
Cell Aggregation/physiology , Fibrin/chemistry , Cells, Cultured , Collagen/metabolism , Fibrin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gels/chemistry , Mechanical Phenomena , Microscopy, Confocal/methods , Wound Healing/physiology
14.
Biophys J ; 118(5): 1152-1164, 2020 03 10.
Article in English | MEDLINE | ID: mdl-31995739

ABSTRACT

The unique nonlinear mechanics of the fibrous extracellular matrix (ECM) facilitates long-range cell-cell mechanical communications that would be impossible for linear elastic substrates. Past research has described the contribution of two separated effects on the range of force transmission, including ECM elastic nonlinearity and fiber alignment. However, the relation between these different effects is unclear, and how they combine to dictate force transmission range is still elusive. Here, we combine discrete fiber simulations with continuum modeling to study the decay of displacements induced by a contractile cell in fibrous networks. We demonstrate that fiber nonlinearity and fiber reorientation both contribute to the strain-induced elastic anisotropy of the cell's local environment. This elastic anisotropy is a "lumped" parameter that governs the slow decay of displacements, and it depends on the magnitude of applied strain, either an external tension or an internal contraction, as a model of the cell. Furthermore, we show that accounting for artificially prescribed elastic anisotropy dictates the decay of displacements induced by a contracting cell. Our findings unify previous single effects into a mechanical theory that explains force transmission in fibrous networks. This work may provide insights into biological processes that involve communication of distant cells mediated by the ECM, such as those occurring in morphogenesis, wound healing, angiogenesis, and cancer metastasis. It may also provide design parameters for biomaterials to control force transmission between cells as a way to guide morphogenesis in tissue engineering.


Subject(s)
Extracellular Matrix , Mechanical Phenomena , Anisotropy , Models, Biological , Stress, Mechanical , Tissue Engineering
15.
Ann Biomed Eng ; 48(2): 868-880, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31802281

ABSTRACT

External forces play an important role in the development and regulation of many tissues. Such effects are often studied using specialized stretchers-standardized commercial and novel laboratory-designed. While designs for 2D stretchers are abundant, the range of available 3D stretcher designs is more limited, especially when live imaging is required. This work presents a novel method and a stretching device that allow straining of 3D hydrogels from their circumference, using a punctured elastic silicone strip as the sample carrier. The system was primarily constructed from 3D-printed parts and low-cost electronics, rendering it simple and cost-efficient to reproduce in other labs. To demonstrate the system functionality, > 100 µm thick soft fibrin gels (< 1 KPa) were stretched, while performing live confocal imaging. The subsequent strains and fiber alignment were analyzed and found to be relatively homogenous throughout the gel's thickness (Z axis). The uniform Z-response enabled by our approach was found to be in contrast to a previously reported approach that utilizes an underlying elastic substrate to convey strain to a 3D thick sample. This work advances the ability to study the role of external forces on biological processes under more physiological 3D conditions, and can contribute to the field of tissue engineering.


Subject(s)
Fibrin/chemistry , Hydrogels/chemistry , Microscopy , Printing, Three-Dimensional , 3T3 Cells , Animals , Mice
16.
J R Soc Interface ; 16(159): 20190348, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31662075

ABSTRACT

Force chains (FCs) are a key determinant of the micromechanical properties and behaviour of heterogeneous materials, such as granular systems. However, less is known about FCs in fibrous materials, such as the networks composing the extracellular matrix (ECM) of biological systems. Using a finite-element computational model, we simulated the contraction of a single cell and two nearby cells embedded in two-dimensional fibrous elastic networks and analysed the tensile FCs that developed in the ECM. The role of ECM nonlinear elasticity on FC formation was evaluated by considering linear and nonlinear, i.e. exhibiting 'buckling' and/or 'strain-stiffening', stress-strain curves. The effect of the degree of cell contraction and network coordination value was assessed. We found that nonlinear elasticity of the ECM fibres influenced the structure of the FCs, facilitating the transition towards more distinct chains that were less branched and more radially oriented than the chains formed in linear elastic networks. When two neighbouring cells contract, a larger number of FCs bridged between the cells in nonlinear networks, and these chains had a larger effective rigidity than the chains that did not reach a neighbouring cell. These results suggest that FCs function as a route for mechanical communication between distant cells and highlight the contribution of ECM fibre nonlinear elasticity to the formation of FCs.


Subject(s)
Cell Communication , Extracellular Matrix/metabolism , Mechanotransduction, Cellular , Models, Biological , Animals , Elasticity , Mice , NIH 3T3 Cells
17.
Adv Biosyst ; 3(12): e1900192, 2019 12.
Article in English | MEDLINE | ID: mdl-32648678

ABSTRACT

In vivo, eukaryotic cells are embedded in a matrix environment, where they grow and develop. Generally, this extracellular matrix (ECM) is an anisotropic fibrous structure, through which macromolecules and biochemical signaling molecules at the nanometer scale diffuse. The ECM is continuously remodeled by cells, via mechanical interactions, which lead to a potential link between biomechanical and biochemical cell-cell interactions. Here, it is studied how cell-induced forces applied on the ECM impact the biochemical transport of molecules between distant cells. It is experimentally observed that cells remodel the ECM by increasing fiber alignment and density of the matrix between them over time. Using random walk simulations on a 3D lattice, elongated fixed obstacles are implemented that mimic the fibrous ECM structure. Both diffusion of a tracer molecule and the mean first-passage time a molecule secreted from one cell takes to reach another cell are measured. The model predicts that cell-induced remodeling can lead to a dramatic speedup in the transport of molecules between cells. Fiber alignment and densification cause reduction of the transport dimensionality from a 3D to a much more rapid 1D process. Thus, a novel mechanism of mechano-biochemical feedback in the regulation of long-range cell-cell communication is suggested.


Subject(s)
Biological Transport/physiology , Extracellular Matrix , Models, Biological , 3T3 Cells , Animals , Anisotropy , Cell Communication/physiology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Mice , Molecular Dynamics Simulation
18.
Biophys J ; 115(7): 1357-1370, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30217380

ABSTRACT

Biological cells embedded in fibrous matrices have been observed to form intercellular bands of dense and aligned fibers through which they mechanically interact over long distances. Such matrix-mediated cellular interactions have been shown to regulate various biological processes. This study aimed to explore the effects of elastic nonlinearity of the fibers contained in the extracellular matrix (ECM) on the transmission of mechanical loads between contracting cells. Based on our biological experiments, we developed a finite-element model of two contracting cells embedded within a fibrous network. The individual fibers were modeled as showing linear elasticity, compression microbuckling, tension stiffening, or both of the latter two. Fiber compression buckling resulted in smaller loads in the ECM, which were primarily directed toward the neighboring cell. These loads decreased with increasing cell-to-cell distance; when cells were >9 cell diameters apart, no such intercellular interaction was observed. Tension stiffening further contributed to directing the loads toward the neighboring cell, though to a smaller extent. The contraction of two neighboring cells resulted in mutual attraction forces, which were considerably increased by tension stiffening and decayed with increasing cell-to-cell distances. Nonlinear elasticity contributed also to the onset of force polarity on the cell boundaries, manifested by larger contractile forces pointing toward the neighboring cell. The density and alignment of the fibers within the intercellular band were greater when fibers buckled under compression, with tension stiffening further contributing to this structural remodeling. Although previous studies have established the role of the ECM nonlinear mechanical behavior in increasing the range of force transmission, our model demonstrates the contribution of nonlinear elasticity of biological gels to directional and efficient mechanical signal transfer between distant cells, and rehighlights the importance of using fibrous gels in experimental settings for facilitating intercellular communication. VIDEO ABSTRACT.


Subject(s)
Cell Communication , Elasticity , Extracellular Matrix/metabolism , Nonlinear Dynamics , Animals , Biomechanical Phenomena , Mice , Models, Biological , NIH 3T3 Cells
19.
Adv Drug Deliv Rev ; 96: 176-82, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26212159

ABSTRACT

Generation of vessel networks within engineered tissues is critical for integration and perfusion of the implanted tissue in vivo. The effect of mechanical cues in guiding and stabilizing the vessels has begun to attract marked interest. This review surveys the impact of mechanical cues on formation of vascular networks in 2D and 3D gel matrices. We give less emphasis to regulation of endothelial monolayers and single endothelial cells. Several vascularization models have consistently found that the stress generated in the gel, and encountered by embedded cells, control various aspects of vascular network formation, including sprouting, branching, alignment, and vessel maturation. This internal stress is generated by cell contractile forces, and is balanced by gel stiffness and boundary constrains imposed on the gel. Actin and myosin II are key molecular players in controlling initiation of vessel sprouting and branching morphogenesis. Additionally, the impact of external mechanical cues on tissue vascularization, and studies supporting the notion that mechanical forces regulate vascularization in the live animal are reviewed.


Subject(s)
Bioprosthesis , Blood Vessel Prosthesis , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Biomechanical Phenomena , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Fibrin/chemistry , Humans
20.
J R Soc Interface ; 12(108): 20150320, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26040601

ABSTRACT

Biological cells sense and respond to mechanical forces, but how such a mechanosensing process takes place in a nonlinear inhomogeneous fibrous matrix remains unknown. We show that cells in a fibrous matrix induce deformation fields that propagate over a longer range than predicted by linear elasticity. Synthetic, linear elastic hydrogels used in many mechanotransduction studies fail to capture this effect. We develop a nonlinear microstructural finite-element model for a fibre network to simulate localized deformations induced by cells. The model captures measured cell-induced matrix displacements from experiments and identifies an important mechanism for long-range cell mechanosensing: loss of compression stiffness owing to microbuckling of individual fibres. We show evidence that cells sense each other through the formation of localized intercellular bands of tensile deformations caused by this mechanism.


Subject(s)
Extracellular Matrix/metabolism , Fibrin/metabolism , Mechanotransduction, Cellular/physiology , Models, Biological , 3T3 Cells , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...