Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 181(2): 1282-7, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18606682

ABSTRACT

Preclinical animal studies have shown that Ab12.6, an agonistic human Ab targeting the erythropoietin receptor (EPOR), exhibits several potential dosing and safety features that make it an attractive clinical candidate for the treatment of anemia. Ab12.6 was derived by yeast display affinity maturation of parental Ab12, a strategy initially intended to improve off-rate and affinity for EPOR, thereby enhancing erythropoietic activity. Analysis of full-length IgGs derived from yeast clones identified sequences within Ab12 CDRH2 that independently influenced both affinity and potency. The Ab12.6 derivative displayed improved in vitro potency and in vivo efficacy, although its binding affinity to the EPOR was lower than that of the parent Ab12. Additional Ab12 derivatives also exhibited an inverse correlation between affinity and potency. These results suggest that for this class of agonistic Abs, faster off-rates may permit continuous receptor stimulation and more efficient erythropoiesis.


Subject(s)
Antibodies/immunology , Antibody Affinity , Erythropoiesis , Erythropoietin/metabolism , Receptors, Erythropoietin/agonists , Antibodies/metabolism , Erythropoietin/immunology , Humans , Molecular Mimicry , Receptors, Erythropoietin/metabolism , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
2.
Blood ; 110(7): 2408-13, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17620453

ABSTRACT

Recombinant human erythropoietin (rHu-EPO) is used to treat anemia by activating the erythropoietin receptor (EPOR) in erythroid progenitor cells, leading to proliferation and differentiation into mature red blood cells. To allow less frequent dosing, a hyperglycosylated version of EPO has been developed with a longer half-life. In principle, an agonistic antibody targeting EPOR would offer an even longer half-life, support robust monthly dosing, and, unlike EPO products, reduce the risk of pure red cell aplasia. The efficiency of signaling and corresponding potency of previously reported antibody mimics are generally suboptimal compared with EPO and not suitable for clinical use. Here we describe a potent, fully human, agonistic antibody (ABT007) targeting EPOR that supports potent, more sustained, and less pulsatile elevation of hematocrit in a human EPOR-expressing transgenic mouse model compared with standard doses of rHu-EPO while requiring less frequent dosing. Resolution of the crystal structure of the EPOR extracellular domain (ECD) complexed to the ABT007 Fab fragment, determined at 0.32 nm, identifies a binding site that is consistent with a novel mechanism of receptor activation based on a unique antibody-imposed conformational change. These results demonstrate that a symmetric molecule can serve as a potent activator of the EPOR.


Subject(s)
Antibodies/immunology , Erythropoietin/metabolism , Molecular Mimicry , Animals , Binding Sites , Cell Line , Crystallography, X-Ray , Erythropoiesis , Hematocrit , Humans , Mice , Mice, Knockout , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, Erythropoietin/chemistry , Receptors, Erythropoietin/deficiency , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Structural Homology, Protein
3.
J Med Chem ; 48(8): 2838-46, 2005 Apr 21.
Article in English | MEDLINE | ID: mdl-15828822

ABSTRACT

The heptapeptide 1, NAc-Gly-Val-DIle-Thr-Arg-Ile-ArgNHEt, a structurally modified fragment derived from the second type-1 repeat of thrombospondin-1 (TSP-1), is known to possess antiangiogenic activity. However, therapeutic utility could not be demonstrated because this peptide has a very short half-life in rodents. To optimize the PD/PK profile of 1, we initiated a systematic SAR study. The initial structural modifications were performed at positions 5 and 7 of peptide 1 and at the N- and C-termini. Out of several hundred peptides synthesized, the nonapeptide 5 (ABT-526) emerged as a promising lead. ABT-526 inhibited VEGF-induced HMVEC cell migration and tube formation in the nanomolar range and increased apoptosis of HUAEC cells. ABT-526 showed acceptable PK in rodents, dog, and monkey. ABT-526, when incorporated in an angiogenic pellet implanted in the rat cornea at 10 microM, reduced neovascularization by 92%. Substitution of DalloIle in place of DIle in ABT-526 provided nonapeptide 6 (ABT-510), which was 30-fold less active than ABT-526 in the EC migration but 20-fold more active in the tube formation assay. In comparison to ABT-526, ABT-510 has increased water solubility and slower clearance in dog and monkey. Radiolabeled ABT-510 demonstrated saturable binding to HMVEC cells at 0.02-20 nM concentrations and was displaceable by TSP-1. ABT-510 and ABT-526 were shown to significantly increase apoptosis of HUAEC cells. ABT-510 was effective in blocking neovascularization in the mouse Matrigel plug model and inhibited tumor growth in the mouse Lewis lung carcinoma model. Previous studies had shown that ABT-510 was effective in inhibiting the outgrowth of murine melanoma metastases in syngeneic mice and in blocking the growth of human bladder carcinoma implanted in nude mice. It had been also shown that ABT-510 could regress tumor lesions in pet dogs or cause unexpected stabilization of the disease in advanced canine cancer. ABT-526 and ABT-510 are the first compounds in the class of potent inhibitors of angiogenesis that mimic the antiangiogenic function of TSP-1. ABT-510 is currently in phase II clinical studies.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Oligopeptides/chemical synthesis , Thrombospondin 1/chemistry , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Animals , Apoptosis , Capillaries/cytology , Chemotaxis/drug effects , Cornea/blood supply , Cornea/drug effects , Dogs , Endothelial Cells/drug effects , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Female , Haplorhini , Humans , In Vitro Techniques , Injections, Intravenous , Mice , Mice, Inbred C57BL , Molecular Mimicry , Neovascularization, Physiologic/drug effects , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Umbilical Cord/cytology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...