Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836636

ABSTRACT

The rate of frontal ring-opening metathesis polymerization (FROMP) using the Grubbs generation II catalyst is impacted by both the concentration and choice of monomers and inhibitors, usually organophosphorus derivatives. Herein we report a data-science-driven workflow to evaluate how these factors impact both the rate of FROMP and how long the formulation of the mixture is stable (pot life). Using this workflow, we built a classification model using a single-node decision tree to determine how a simple phosphine structural descriptor (Vbur-near) can bin long versus short pot life. Additionally, we applied a nonlinear kernel ridge regression model to predict how the inhibitor and selection/concentration of comonomers impact the FROMP rate. The analysis provides selection criteria for material network structures that span from highly cross-linked thermosets to non-cross-linked thermoplastics as well as degradable and nondegradable materials.

2.
J Am Chem Soc ; 146(11): 7216-7221, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38441481

ABSTRACT

In this study, we explore the distinct reactivity patterns between frontal ring-opening metathesis polymerization (FROMP) and room-temperature solventless ring-opening metathesis polymerization (ROMP). Despite their shared mechanism, we find that FROMP is less sensitive to inhibitor concentration than room-temperature ROMP. By increasing the initiator-to-monomer ratio for a fixed inhibitor/initiator quantity, we find reduction in the ROMP background reactivity at room temperature (i.e., increased resin pot life). At elevated temperatures where inhibitor dissociation prevails, accelerated frontal polymerization rates are observed because of the concentrated presence of the initiator. Surprisingly, the strategy of employing higher initiator loading enhances both pot life and front speeds, which leads to FROMP rates exceeding prior reported values by over 5 times. This counterintuitive behavior is attributed to an increase in the proximity of the inhibitor to the initiator within the bulk resin and to whether the temperature favors coordination or dissociation of the inhibitor. A rapid method was developed for assessing resin pot life, and a straightforward model for active initiator behavior was established. Modified resin systems enabled direct ink writing of robust thermoset structures at rates much faster than previously possible.

3.
Angew Chem Int Ed Engl ; 63(22): e202404474, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38453652

ABSTRACT

Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.

4.
RSC Appl Polym ; 1(1): 10-18, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-38013907

ABSTRACT

Bio-based vitrimers represent a promising class of thermosetting polymer materials, pairing the recyclability of dynamic covalent networks with the renewability of non-fossil fuel feedstocks. Vanillin, a low-cost lignin derivative, enables facile construction of polyimine networks marked by rapid exchange and sensitivity to acid-catalyzed hydrolysis. Furthermore, the aromatic structure makes it a promising candidate for the design of highly aromatic networks capable of high-performance thermal and dimensional stability. Such properties are paramount in polymeric thermal protection systems. Here, we report on the fabrication of polyimine networks with particularly high aromatic content from a novel trifunctional vanillin monomer prepared from the nucleophilic aromatic substitution of perfluoropyridine (PFP) on a multi-gram scale (>20 g) in high yield (86%). The trifunctional aromatic scaffold was then crosslinked with various diamines to demonstrate tunable viscoelastic behavior and thermal properties, with glass transition temperatures (Tg) ranging from 9 to 147 °C, degradation temperatures (5% mass loss) up to approximately 370 °C, and excellent char yields up to 68% at 650 °C under nitrogen. Moreover, the vitrimers displayed mechanical reprocessability over five destruction/healing cycles and rapid chemical recyclability following acidic hydrolysis at mild temperatures. Our findings indicate that vitrimers possessing tunable properties and high-performance thermomechanical behavior can be easily constructed from vanillin and electrophilic aromatic scaffolds for applications in heat-shielding materials and ablative coatings.

5.
ACS Appl Mater Interfaces ; 15(21): 25212-25223, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36888996

ABSTRACT

Thermoset materials sacrifice recyclability and reshapeability for increased chemical and mechanical robustness because of an immobilized, cross-linked polymeric matrix. The robust material properties of thermosets make them well-suited for applications such as heat-shielding materials (HSMs) or ablatives where excellent thermal stability, good mechanical strength, and high charring ability are paramount. Many of these material properties are characteristic of covalent adaptable networks (CANs), where the static connectivity of thermosets has been replaced with dynamic cross-links. This dynamic connectivity allows network mobility while retaining cross-link connectivity to permit damage repair and reshaping that are traditionally inaccessible for thermoset materials. Herein, we report the synthesis of hybrid inorganic-organic enaminone vitrimers that contain an exceptionally high weight percent of polyhedral oligomeric silsesquioxane (POSS)-derivatives. Polycondensation of ß-ketoester-containing POSS with various diamine cross-linkers led to materials with facile tunability, shapeability, predictable glass transition temperatures, good thermal stability, and high residual char mass following thermal degradation. Furthermore, the char materials show notable retention of their preordained shape following decomposition, suggesting their future utility in the design of HSMs with complex detailing.

6.
ACS Macro Lett ; 11(9): 1097-1101, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35998375

ABSTRACT

Two frontal polymerization (FP) mechanisms, frontal ring-opening metathesis polymerization (FROMP) of dicyclopentadiene and frontal radical polymerization (FRaP) of benzyl acrylate and hexanediol diacrylate, were combined for rapid manufacturing of welded thermoset materials. Leveraging the immiscibility of the two different FP resins, welded thermosets and gradient foams of varying composition were achieved by switching of FP mechanisms. The adhesion strength of the welded thermoset materials differed depending on the originating mechanism. Finally, welded thermoset foams of varying porosity and homogeneity were generated through initiation from the bottom of the two resins.


Subject(s)
Acrylates , Polymerization , Porosity
7.
J Am Chem Soc ; 144(2): 845-853, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34984901

ABSTRACT

Thermosets composed of cross-linked polymers demonstrate enhanced thermal, solvent, chemical, and dimensional stability as compared to their non-cross-linked counterparts. However, these often-desirable material properties typically come at the expense of reprocessability, recyclability, and healability. One solution to this challenge comes from the construction of polymers that are reversibly cross-linked. We relied on lessons from Nature to present supramolecular polymer networks comprised of cooperative Janus-faced hydrogen bonded cross-links. A triazine-based guanine-cytosine base (GCB) with two complementary faces capable of self-assembly through three hydrogen bonding sites was incorporated into poly(butyl acrylate) to create a reprocessable and recyclable network. Rheological experiments and dynamic mechanical analysis (DMA) were employed to investigate the flow behavior of copolymers with randomly distributed GCB units of varying incorporation. Our studies revealed that the cooperativity of multiple hydrogen bonding faces yields excellent network integrity evidenced by a rubbery plateau that spanned the widest temperature range yet reported for any supramolecular network. To verify that each Janus-faced motif engages in multiple cross-links, we studied the effects of local concentration of the incorporated GCB units within the polymer chain. Mechanical strength improved by colocalizing the GCB within a block copolymer morphology. This enhanced performance revealed that the number of effective cross-links in the network increased with the local concentration of hydrogen bonding units. Overall, this study demonstrates that cooperative noncovalent interactions introduced through Janus-faced hydrogen bonding moieties confers excellent network stability and predictable viscoelastic flow behavior in supramolecular networks.

8.
J Am Chem Soc ; 142(1): 283-289, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31794219

ABSTRACT

In this report, we merge block copolymers with vitrimers in an effort to realize the prospect of higher-order, nanoscale control over associative cross-link exchange and flow. We show the use of controlled polymerization as a vital tool to understand fundamental structure-property effects through the precise control of polymer architecture and molecular weight. Vitrimers derived from self-assembling block copolymers exhibit superior resistance to macroscopic deformation in comparison to their analogs generated from statistical copolymers. Our results suggest that the enhanced creep resistance achieved by control over chain topology in block vitrimers can be used to tune viscoelastic properties. The resistance to macroscopic deformation that arises from a microphase-separated structure in this new class of materials differentiates block vitrimers from their statistical counterparts and introduces the potential of topology-control over viscoelastic flow.


Subject(s)
Polymers/chemistry , Calorimetry, Differential Scanning , Chromatography, Gel , Elasticity , Mechanical Phenomena , Microscopy, Atomic Force , Molecular Weight , Polymerization , Scattering, Small Angle , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Viscosity , X-Ray Diffraction
9.
J Am Chem Soc ; 141(41): 16181-16196, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31525287

ABSTRACT

The classical division of polymeric materials into thermoplastics and thermosets based on covalent network structure often implies that these categories are distinct and irreconcilable. Yet, the past two decades have seen extensive development of materials that bridge this gap through incorporation of dynamic crosslinks, enabling them to behave as both robust networks and moldable plastics. Although their potential utility is significant, the growth of covalent adaptable networks (CANs) has obscured the line between "thermoplastic" and "thermoset" and erected a conceptual barrier to the growing number of new researchers entering this discipline. This Perspective aims to both outline the fundamental theory of CANs and provide a critical assessment of their current status. We emphasize throughout that the unique properties of CANs emerge from the network chemistry, and particularly highlight the role that the crosslink exchange mechanism (i.e., dissociative exchange or associative exchange) plays in the resultant material properties under processing conditions. Predominant focus will be on thermally induced dynamic behavior, as the majority of presently employed exchange chemistries rely on thermal stimulus, and it is simple to apply to bulk materials. Lastly, this Perspective aims to identify current issues and address possible solutions for better fundamental understanding within this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...