Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 68(11): 1805-1817, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31628526

ABSTRACT

Antibodies targeting the T-cell immune checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA4) enhance the effectiveness of radiotherapy for melanoma patients, but many remain resistant. To further improve response rates, we explored combining anti-CTLA4 blockade with antisense suppression of CD47, an inhibitory receptor on T cells that limit T-cell receptor signaling and killing of irradiated target cells. Human melanoma data from The Cancer Genome Atlas revealed positive correlations between CD47 mRNA expression and expression of T-cell regulators including CTLA4 and its counter receptors CD80 and CD86. Antisense suppression of CD47 on human T cells in vitro using a translational blocking morpholino (CD47 m) alone or combined with anti-CTLA4 enhanced antigen-dependent killing of irradiated melanoma cells. Correspondingly, the treatment of locally irradiated B16F10 melanomas in C57BL/6 mice using combined blockade of CD47 and CTLA4 significantly increased the survival of mice relative to either treatment alone. CD47 m alone or in combination with anti-CTLA4 increased CD3+ T-cell infiltration in irradiated tumors. Anti-CTLA4 also increased CD3+ and CD8+ T-cell infiltration as well as markers of NK cells in non-irradiated tumors. Anti-CTLA4 combined with CD47 m resulted in the greatest increase in intratumoral granzyme B, interferon-γ, and NK-cell marker mRNA expression. These data suggest that combining CTLA4 and CD47 blockade could provide a survival benefit by enhancing adaptive T- and NK-cell immunity in irradiated tumors.


Subject(s)
CD47 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Ipilimumab/administration & dosage , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/mortality , T-Lymphocytes, Cytotoxic/immunology , Animals , CD47 Antigen/genetics , CD47 Antigen/immunology , Combined Modality Therapy , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/radiation effects , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Radiation Dosage , Survival Rate , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/radiation effects , Tumor Cells, Cultured
2.
Cytotherapy ; 21(1): 17-31, 2019 01.
Article in English | MEDLINE | ID: mdl-30503100

ABSTRACT

BACKGROUND: Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages. METHODS: We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay. RESULTS: Multiple IFN-γ-stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques. DISCUSSION: This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.


Subject(s)
Immunosuppression Therapy , Interferon-gamma/pharmacology , Machine Learning , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Plasticity , Cell Proliferation , Cells, Cultured , Coculture Techniques , Humans , Leukocytes, Mononuclear/cytology , Lymphocyte Activation , Stochastic Processes , Tissue Embedding/methods
4.
PLoS One ; 10(5): e0128220, 2015.
Article in English | MEDLINE | ID: mdl-26010544

ABSTRACT

CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47-/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47-/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47-/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47-/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47-/- mice. The chemoattractant chemokines MIP-2α and MIP-2ß were highly expressed in infected spleens of cd47-/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47-/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity.


Subject(s)
CD47 Antigen/immunology , Candida albicans/immunology , Candidiasis/immunology , Immunity, Cellular , Immunity, Innate , Animals , CD47 Antigen/genetics , Candidiasis/genetics , Cytokines/immunology , Disease Models, Animal , Kidney/immunology , Macrophages/immunology , Mice , Mice, Knockout , Neutrophils/immunology , T-Lymphocytes, Helper-Inducer/immunology
5.
J Immunol ; 192(7): 3390-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24585879

ABSTRACT

RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes.


Subject(s)
Endothelial Cells/immunology , Intercellular Adhesion Molecule-1/immunology , Mechanotransduction, Cellular/immunology , Rho Guanine Nucleotide Exchange Factors/immunology , Transendothelial and Transepithelial Migration/immunology , Blotting, Western , Cells, Cultured , Cytochalasin D/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/immunology , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Infant, Newborn , Intercellular Adhesion Molecule-1/metabolism , Microscopy, Fluorescence , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA Interference , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/immunology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...