Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 51(2): 398-410, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34628596

ABSTRACT

Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region's climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over coming decades.


Subject(s)
Methane , Nitrous Oxide , Arctic Regions , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
2.
Ambio ; 51(2): 411-422, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34480730

ABSTRACT

Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large-scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences.


Subject(s)
Carbon Monoxide , Climate , Arctic Regions , Ice Cover , Oceans and Seas , Sulfides
3.
PLoS One ; 16(3): e0242637, 2021.
Article in English | MEDLINE | ID: mdl-33657117

ABSTRACT

In this study, the effects of sea ice and wind speed on the timing and composition of phytoplankton spring bloom in the central and southern Baltic Sea are investigated by a hydrodynamic-biogeochemical model and observational data. The modelling experiment compared the results of a reference run in the presence of sea ice with those of a run in the absence of sea ice, which confirmed that ecological conditions differed significantly for both the scenarios. It has been found that diatoms dominate the phytoplankton biomass in the absence of sea ice, whereas dinoflagellates dominate the biomass in the presence of thin sea ice. The study concludes that under moderate ice conditions (representing the last few decades), dinoflagellates dominate the spring bloom phytoplankton biomass in the Baltic Sea, whereas diatoms will be dominant in the future as a result of climate change i.e. in the absence of sea ice.


Subject(s)
Climate Change , Ice Cover , Phytoplankton/physiology , Wind , Atlantic Ocean , Baltic States , Biomass , Models, Theoretical , Seasons
4.
Mar Pollut Bull ; 109(1): 267-280, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27289279

ABSTRACT

Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.


Subject(s)
Carbon Dioxide , Ecosystem , Models, Theoretical
5.
PLoS One ; 9(11): e112881, 2014.
Article in English | MEDLINE | ID: mdl-25393720

ABSTRACT

A coupled hydrodynamic-biogeochemical model was implemented in order to estimate the effects of Major Baltic Inflows on the near-bottom hydrophysical and biogeochemical conditions in the northern Baltic Proper and the western Gulf of Finland during the period 1991-2009. We compared results of a realistic reference run to the results of an experimental run where Major Baltic Inflows were suppressed. Further to the expected overall decrease in bottom salinity, this modelling experiment confirms that in the absence of strong saltwater inflows the deep areas of the Baltic Proper would become more anoxic, while in the shallower areas (western Gulf of Finland) near-bottom average conditions improve. Our experiment revealed that typical estuarine circulation results in the sporadic emergence of short-lasting events of near-bottom anoxia in the western Gulf of Finland due to transport of water masses from the Baltic Proper. Extrapolating our results beyond the modelled period, we speculate that the further deepening of the halocline in the Baltic Proper is likely to prevent inflows of anoxic water to the Gulf of Finland and in the longer term would lead to improvement in near-bottom conditions in the Baltic Proper. Our results reaffirm the importance of accurate representation of salinity dynamics in coupled Baltic Sea models serving as a basis for credible hindcast and future projection simulations of biogeochemical conditions.


Subject(s)
Models, Theoretical , Oceans and Seas , Finland
SELECTION OF CITATIONS
SEARCH DETAIL
...