Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(5): 1140-1143, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32108790

ABSTRACT

Frequency comb synthesized microwaves have been so far realized with tabletop systems, operated in well-controlled environments. Here, we demonstrate state-of-the-art ultrastable microwave synthesis with a compact rack-mountable apparatus. We present absolute phase noise characterization of a 12 GHz signal using an ultrastable laser at $\sim{194}\;{\rm THz}$∼194THz and an Er:fiber comb divider, obtaining $ - {83}\;{\rm dBc/Hz}$-83dBc/Hz at 1 Hz and $ \lt - {166}\;{\rm dBc/Hz}$<-166dBc/Hz for offsets greater than 5 kHz. Employing semiconductor coating mirrors for the same type of transportable optical frequency reference, we show that $ - {105}\;{\rm dBc/Hz}$-105dBc/Hz at 1 Hz is supported by demonstrating a residual noise limit of division and detection process of $ - {115}\;{\rm dBc/Hz}$-115dBc/Hz at 1 Hz. This level of fidelity paves the way for the deployment of ultrastable photonic microwave oscillators and for operating transportable optical clocks.

2.
Opt Express ; 21(22): 27057-62, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24216929

ABSTRACT

We demonstrate an amplitude-to-phase (AM-PM) conversion coefficient for a balanced optical-microwave phase detector (BOM-PD) of 0.001 rad, corresponding to AM-PM induced phase noise 60 dB below the single-sideband relative intensity noise of the laser. This enables us to generate 8 GHz microwave signals from a commercial Er-fibre comb with a single-sideband residual phase noise of -131 dBc Hz(-1) at 1 Hz offset frequency and -148 dBc Hz(-1) at 1 kHz offset frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...