Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35625127

ABSTRACT

In dairy farms automatic milking systems and grazing, traffic to the robot is the cornerstone of profitability as higher milking frequency enhances milk yield. In this study, we investigated whether shortening the minimum milking interval (MMI), i.e., the required time between two milkings for an animal to get access to the milking unit, coupled with high concentrate allocation, could increase the daily milking frequency (MF, milking/cow/day) and consequently the milk yield of grazing cows. Two groups of cows (n = 19 and n = 20) belonging to the same herd were discriminated based on concentrate supply (high vs. low: 4 vs. 2 kg/cow/day) and then further divided on the basis of MMI (4 h vs. 6 h) so that four groups were formed (HC4 h-HC6 h-LC4 h and finally LC6 h). Higher concentrate allocation induced a rise in milk yield (MY, kg/cow/day) and allowed to stabilize it in periods of grass shortage but did not influence milking frequency, while shorter MMI (4 h) was correlated with higher MF without effect on MY. A combination of both strategies (4 h and high concentrate) improved the traffic globally to the robot. This result was linked to a reduction of refused milking and, therefore, the decrease in returns to the robot. This strategy could be advised to maximize the system's efficiency during periods of high milk sales. When the economic conditions do not favour the increase in concentrate supply, short MMI could facilitate the traffic and increase the efficiency of returns.

2.
Animals (Basel) ; 10(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466281

ABSTRACT

More dairy farms (up to more than one in four in some countries) are equipped with automatic milking systems (AMS) worldwide. Because of the positive impacts of grazing, e.g., on animal welfare or on production costs, numerous researchers have published papers on the combination of AMS with grazing. However, pasture-based AMS usually causes a reduction in milking frequency (MF) compared to indoors systems. The objectives of this meta-analysis were to review publications on the impacts of pasture-based AMS on MF and mitigation strategies. First, data from 43 selected studies were gathered in a dataset including 14 parameters, and on which a Principal Component Analysis (PCA) was performed, leading to the description of four clusters summarizing different management practices. Multiple pairwise comparisons were performed to determine the relationship between the highlighted parameters of MF on milk yield (MY). From these different analyses, the relationship between MF and MY was confirmed, the systems, i.e., Clusters 1 and 2, that experienced the lowest MF also demonstrated the lowest MY/cow per day. In these clusters, grazed grass was an essential component of the cow's diet and low feeding costs compensated MY reduction. The management options described in Clusters 3 and 4 allowed maintenance of MF and MY by complementing the cows' diets with concentrates or partial mixed ration supplied at the AMS feeding bin or provided at barn. The chosen management options were closely linked to the geographical origin of the papers indicating that other factors (e.g., climatic conditions or available grasslands) could be decisional key points for AMS management strategies.

3.
Environ Res ; 151: 130-144, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27475053

ABSTRACT

Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.


Subject(s)
Climate Change , Livestock , Models, Theoretical , Animal Husbandry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...