Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Curr Opin Microbiol ; 78: 102449, 2024 04.
Article in English | MEDLINE | ID: mdl-38432159

ABSTRACT

Horizontal transfer of plasmids by conjugation is a fundamental mechanism driving the widespread dissemination of drug resistance among bacterial populations. The successful colonization of a new host cell necessitates the plasmid to navigate through a series of sequential steps, each dependent on specific plasmid or host factors. This review explores recent advancements in comprehending the cellular and molecular mechanisms that govern plasmid transmission, establishment, and long-term maintenance. Adopting a plasmid-centric perspective, we describe the critical steps and bottlenecks in the plasmid's journey toward a new host cell, encompassing exploration and contact initiation, invasion, establishment and control, and assimilation.


Subject(s)
Bacteria , Conjugation, Genetic , Plasmids/genetics , Bacteria/genetics
2.
Proc Natl Acad Sci U S A ; 120(47): e2310842120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37963249

ABSTRACT

Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.


Subject(s)
Escherichia coli , Genes, Bacterial , Escherichia coli/genetics , Plasmids/genetics , Fimbriae, Bacterial/genetics , DNA, Bacterial/genetics , Conjugation, Genetic , DNA , Gene Transfer, Horizontal
3.
Plasmid ; 126: 102680, 2023 05.
Article in English | MEDLINE | ID: mdl-37001687

ABSTRACT

The emergence and spread of antimicrobial resistance results in antibiotic inefficiency against multidrug resistant bacterial strains. Alternative treatment to antibiotics must be investigated to fight bacterial infections and limit this global public health problem. We recently developed an innovative strategy based on mobilizable Targeted-Antibacterial-Plasmids (TAPs) that deliver CRISPR/Cas systems with strain-specific antibacterial activity, using the F plasmid conjugation machinery for transfer into the targeted strains. These TAPs were shown to specifically kill a variety of Enterobacteriaceae strains, including E. coli K12 and the pathogen strains EPEC, Enterobacter cloacae and Citrobacter rodentium. Here, we extend the host-range of TAPs using the RP4 plasmid conjugation system for their mobilization, thus allowing the targeting of E. coli but also phylogenetically distant species, including Salmonella enterica Thyphimurium, Klebsiella pneumoniae, Vibrio cholerae, and Pseudomonas aeruginosa. This work demonstrates the versatility of the TAP strategy and represents a significant step toward the development of non-antibiotic strain-specific antimicrobial treatments.


Subject(s)
Escherichia coli , Host Specificity , Plasmids/genetics , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/genetics
4.
Nucleic Acids Res ; 51(6): 2790-2799, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36772829

ABSTRACT

Dissemination of antibiotic resistance, a current societal challenge, is often driven by horizontal gene transfer through bacterial conjugation. During conjugative plasmid transfer, single-stranded (ss) DNA is transferred from the donor to the recipient cell. Subsequently, a complete double-stranded (ds) plasmid molecule is generated and plasmid-encoded genes are expressed, allowing successful establishment of the transconjugant cell. Such dynamics of transmission can be modulated by host- or plasmid-encoded factors, either in the donor or in the recipient cell. We applied transposon insertion sequencing to identify host-encoded factors that affect conjugative transfer frequency in Escherichia coli. Disruption of the recipient uvrD gene decreased the acquisition frequency of conjugative plasmids belonging to different incompatibility groups. Results from various UvrD mutants suggested that dsDNA binding activity and interaction with RNA polymerase are dispensable, but ATPase activity is required for successful plasmid establishment of transconjugant cells. Live-cell microscopic imaging showed that the newly transferred ssDNA within a uvrD- recipient often failed to be converted to dsDNA. Our work suggested that in addition to its role in maintaining genome integrity, UvrD is also key for the establishment of horizontally acquired plasmid DNA that drives genome diversity and evolution.


Subject(s)
DNA Helicases , DNA, Single-Stranded , Escherichia coli Proteins , Conjugation, Genetic/genetics , DNA , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Transfer, Horizontal/genetics , Plasmids/genetics
5.
Nat Commun ; 14(1): 294, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653393

ABSTRACT

Conjugation is a contact-dependent mechanism for the transfer of plasmid DNA between bacterial cells, which contributes to the dissemination of antibiotic resistance. Here, we use live-cell microscopy to visualise the intracellular dynamics of conjugative transfer of F-plasmid in E. coli, in real time. We show that the transfer of plasmid in single-stranded form (ssDNA) and its subsequent conversion into double-stranded DNA (dsDNA) are fast and efficient processes that occur with specific timing and subcellular localisation. Notably, the ssDNA-to-dsDNA conversion determines the timing of plasmid-encoded protein production. The leading region that first enters the recipient cell carries single-stranded promoters that allow the early and transient synthesis of leading proteins immediately upon entry of the ssDNA plasmid. The subsequent conversion into dsDNA turns off leading gene expression, and activates the expression of other plasmid genes under the control of conventional double-stranded promoters. This molecular strategy allows for the timely production of factors sequentially involved in establishing, maintaining and disseminating the plasmid.


Subject(s)
Conjugation, Genetic , Escherichia coli , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Plasmids/genetics , DNA , DNA, Single-Stranded/genetics , Gene Transfer, Horizontal
6.
Mol Microbiol ; 119(2): 237-251, 2023 02.
Article in English | MEDLINE | ID: mdl-36527185

ABSTRACT

Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.


Subject(s)
Bacterial Proteins , Escherichia coli Proteins , Bacterial Proteins/metabolism , Chromosomes, Bacterial/metabolism , Cell Division , Bacteria/metabolism , Escherichia coli/genetics , DNA , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism
7.
Methods Mol Biol ; 2476: 63-74, 2022.
Article in English | MEDLINE | ID: mdl-35635697

ABSTRACT

Bacterial genomes are highly plastic and evolve rapidly by acquiring new genetic information through horizontal gene transfer mechanisms. Capturing DNA transfer by conjugation between bacterial cells in real time is relevant to address bacterial genomes' dynamic architecture comprehensively. Here, we describe a method allowing the direct visualization of bacterial conjugation in live cells, including the fluorescent labeling of the conjugative pilus and the monitoring of plasmid DNA transfer from donor to recipient cells.


Subject(s)
Conjugation, Genetic , Fimbriae, Bacterial , DNA , Fimbriae, Bacterial/genetics , Gene Transfer, Horizontal , Plasmids/genetics
8.
Nucleic Acids Res ; 49(6): 3584-3598, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33660775

ABSTRACT

The global emergence of drug-resistant bacteria leads to the loss of efficacy of our antibiotics arsenal and severely limits the success of currently available treatments. Here, we developed an innovative strategy based on targeted-antibacterial-plasmids (TAPs) that use bacterial conjugation to deliver CRISPR/Cas systems exerting a strain-specific antibacterial activity. TAPs are highly versatile as they can be directed against any specific genomic or plasmid DNA using the custom algorithm (CSTB) that identifies appropriate targeting spacer sequences. We demonstrate the ability of TAPs to induce strain-selective killing by introducing lethal double strand breaks (DSBs) into the targeted genomes. TAPs directed against a plasmid-born carbapenem resistance gene efficiently resensitise the strain to the drug. This work represents an essential step toward the development of an alternative to antibiotic treatments, which could be used for in situ microbiota modification to eradicate targeted resistant and/or pathogenic bacteria without affecting other non-targeted bacterial species.


Subject(s)
CRISPR-Cas Systems , Enterobacteriaceae/genetics , Plasmids/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Conjugation, Genetic , Escherichia coli/genetics , RNA/chemistry , Software , Species Specificity
9.
Mol Cell ; 81(7): 1499-1514.e6, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33621478

ABSTRACT

Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%-99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins.


Subject(s)
DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics
10.
Genes (Basel) ; 11(10)2020 10 16.
Article in English | MEDLINE | ID: mdl-33081159

ABSTRACT

Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors-active partitioning, toxin-antitoxin and conjugational transfer-are all involved in the prevalence of pESBL in the E. coli population.


Subject(s)
Conjugation, Genetic , Escherichia coli Infections/transmission , Escherichia coli O104/genetics , Escherichia coli Proteins/genetics , Gene Transfer, Horizontal , Plasmids/genetics , beta-Lactam Resistance/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Humans , Toxin-Antitoxin Systems/genetics
11.
Genes (Basel) ; 11(11)2020 10 22.
Article in English | MEDLINE | ID: mdl-33105635

ABSTRACT

Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.


Subject(s)
Biofilms/growth & development , Drug Resistance, Bacterial/genetics , F Factor/genetics , Gene Transfer, Horizontal/genetics , Gram-Negative Bacteria/genetics , DNA, Bacterial/genetics , F Factor/physiology , Fimbriae, Bacterial/metabolism
12.
FEMS Microbiol Rev ; 44(6): 782-792, 2020 11 24.
Article in English | MEDLINE | ID: mdl-32761242

ABSTRACT

Drug-efflux by pump proteins is one of the major mechanisms of antibiotic resistance in bacteria. Here, we use quantitative fluorescence microscopy to investigate the real-time dynamics of drug accumulation and efflux in live E. coli cells. We visualize simultaneously the intrinsically fluorescent protein-synthesis inhibitor tetracycline (Tc) and the fluorescently labelled Tc-specific efflux pump, TetA. We show that Tc penetrates the cells within minutes and accumulates to stable intracellular concentration after ∼20 min. The final level of drug accumulation reflects the balance between Tc-uptake by the cells and Tc-efflux by pump proteins. In wild-type Tc-sensitive cells, drug accumulation is significantly limited by the activity of the multidrug efflux pump, AcrAB-TolC. Tc-resistance wild-type cells carrying a plasmid-borne Tn10 transposon contain variable amounts of TetA protein, produced under steady-state repression by the TetR repressor. TetA content heterogeneity determines the cells' initial ability to efflux Tc. Yet, efflux remains partial until the synthesis of additional TetA pumps allows for Tc-efflux activity to surpass Tc-uptake. Cells overproducing TetA no longer accumulate Tc and become resistant to high concentrations of the drug. This work uncovers the dynamic balance between drug entry, protein-synthesis inhibition, efflux-pump production, drug-efflux activity and drug-resistance levels.


Subject(s)
Antiporters/metabolism , Bacterial Proteins/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Tetracycline/metabolism , Microscopy, Fluorescence , Tetracycline Resistance/genetics
13.
J Vis Exp ; (153)2019 11 28.
Article in English | MEDLINE | ID: mdl-31840669

ABSTRACT

Analysis of the bacterial ability to grow and survive under stress conditions is essential for a wide range of microbiology studies. It is relevant to characterize the response of bacterial cells to stress-inducing treatments such as exposure to antibiotics or other antimicrobial compounds, irradiation, non-physiological pH, temperature, or salt concentration. Different stress treatments might disturb different cellular processes, including cell division, DNA replication, protein synthesis, membrane integrity, or cell cycle regulation. These effects are usually associated with specific phenotypes at the cellular scale. Therefore, understanding the extent and causality of stress-induced growth or viability deficiencies requires a careful analysis of several parameters, both at the single-cell and at the population levels. The experimental strategy presented here combines traditional optical density monitoring and plating assays with single-cell analysis techniques such as flow cytometry and real time microscopy imaging in live cells. This multiscale framework allows a time-resolved description of the impact of stress conditions on the fate of a bacterial population.


Subject(s)
Bacteria/growth & development , DNA Replication , Flow Cytometry/methods , Microfluidics/methods , Stress, Physiological , Time-Lapse Imaging/methods , Image Processing, Computer-Assisted
14.
Front Microbiol ; 10: 2450, 2019.
Article in English | MEDLINE | ID: mdl-31736897

ABSTRACT

Acinetobacter baumannii is a multidrug-resistant nosocomial opportunistic pathogen that is becoming a major health threat worldwide. In this study, we have focused on the A. baumannii DSM30011 strain, an environmental isolate that retains many virulence-associated traits. We found that its genome contains two loci encoding for contact-dependent growth inhibition (CDI) systems. These systems serve to kill or inhibit the growth of non-sibling bacteria by delivering toxins into the cytoplasm of target cells, thereby conferring the host strain a significant competitive advantage. We show that one of the two toxins functions as a DNA-damaging enzyme, capable of inducing DNA double-stranded breaks to the chromosome of Escherichia coli strain. The second toxin has unknown catalytic activity but stops the growth of E. coli without bactericidal effect. In our conditions, only one of the CDI systems was highly expressed in the A. baumannii DSM30011 strain and was found to mediate interbacterial competition. Surprisingly, the absence of this CDI system promotes adhesion of A. baumannii DSM30011 to both abiotic and biotic surfaces, a phenotype that differs from previously described CDI systems. Our results suggest that a specific regulation mediated by this A. baumannii DSM30011 CDI system may result in changes in bacterial physiology that repress host cell adhesion and biofilm formation.

15.
Science ; 364(6442): 778-782, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31123134

ABSTRACT

Drug-resistance dissemination by horizontal gene transfer remains poorly understood at the cellular scale. Using live-cell microscopy, we reveal the dynamics of resistance acquisition by transfer of the Escherichia coli fertility factor-conjugation plasmid encoding the tetracycline-efflux pump TetA. The entry of the single-stranded DNA plasmid into the recipient cell is rapidly followed by complementary-strand synthesis, plasmid-gene expression, and production of TetA. In the presence of translation-inhibiting antibiotics, resistance acquisition depends on the AcrAB-TolC multidrug efflux pump, because it reduces tetracycline concentrations in the cell. Protein synthesis can thus persist and TetA expression can be initiated immediately after plasmid acquisition. AcrAB-TolC efflux activity can also preserve resistance acquisition by plasmid transfer in the presence of antibiotics with other modes of action.


Subject(s)
Carrier Proteins/physiology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/physiology , Escherichia coli/physiology , F Factor/physiology , Anti-Bacterial Agents/pharmacology , Antiporters/antagonists & inhibitors , Antiporters/biosynthesis , Antiporters/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Carrier Proteins/genetics , Conjugation, Genetic , DNA, Single-Stranded , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , F Factor/genetics , Microscopy , Protein Biosynthesis/drug effects , Tetracycline/pharmacology
16.
Sci Rep ; 9(1): 2654, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804404

ABSTRACT

Overexpression of correctly folded membrane proteins is a fundamental prerequisite for functional and structural studies. One of the most commonly used expression systems for the production of membrane proteins is Escherichia coli. While misfolded proteins typically aggregate and form inclusions bodies, membrane proteins that are addressed to the membrane and extractable by detergents are generally assumed to be properly folded. Accordingly, GFP fusion strategy is often used as a fluorescent proxy to monitor their expression and folding quality. Here we investigated the functionality of two different multidrug ABC transporters, the homodimer BmrA from Bacillus subtilis and the heterodimer PatA/PatB from Streptococcus pneumoniae, when produced in several E. coli strains with T7 expression system. Strikingly, while strong expression in the membrane of several strains could be achieved, we observed drastic differences in the functionality of these proteins. Moreover, we observed a general trend in which mild detergents mainly extract the population of active transporters, whereas a harsher detergent like Fos-choline 12 could solubilize transporters irrespective of their functionality. Our results suggest that the amount of T7 RNA polymerase transcripts may indirectly but notably impact the structure and activity of overexpressed membrane proteins, and advise caution when using GFP fusion strategy.


Subject(s)
Escherichia coli/genetics , Gene Expression , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Fusion Proteins , Biological Transport , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genes, Reporter , Membrane Proteins/isolation & purification , Species Specificity , Transport Vesicles
17.
mBio ; 10(1)2019 01 02.
Article in English | MEDLINE | ID: mdl-30602584

ABSTRACT

Coordinating chromosome duplication and segregation with cell division is clearly critical for bacterial species with one chromosome. The precise choreography required is even more complex in species with more than one chromosome. The alpha subgroup of bacteria contains not only one of the best-studied bacterial species, Caulobacter crescentus, but also several species with more than one chromosome. Rhodobacter sphaeroides is an alphaproteobacterium with two chromosomes, but, unlike C. crescentus, it divides symmetrically rather than buds and lacks the complex CtrA-dependent control mechanism. By examining the Ori and Ter regions of both chromosomes and associated ParA and ParB proteins relative to cell division proteins FtsZ and MipZ, we have identified a different pattern of chromosome segregation and cell division. The pattern of chromosome duplication and segregation resembles that of Vibrio cholerae, not that of Agrobacterium tumefaciens, with duplication of the origin and terminus regions of chromosome 2 controlled by chromosome 1. Key proteins are localized to different sites compared to C. crescentus OriC1 and ParB1 are localized to the old pole, while MipZ and FtsZ localize to the new pole. Movement of ParB1 to the new pole following chromosome duplication releases FtsZ, which forms a ring at midcell, but, unlike reports for other species, MipZ monomers do not form a gradient but oscillate between poles, with the nucleotide-bound monomer and the dimer localizing to midcell. MipZ dimers form a single ring (with a smaller diameter) close to the FtsZ ring at midcell and constrict with the FtsZ ring. Overproduction of the dimer form results in filamentation, suggesting that MipZ dimers are regulating FtsZ activity and thus septation. This is an unexpected role for MipZ and provides a new model for the integration of chromosome segregation and cell division.IMPORTANCE Cell division has to be coordinated with chromosome segregation to ensure the stable inheritance of genetic information. We investigated this coordination in the multichromosome bacterium Rhodobacter sphaeroides By examining the origin and terminus regions of the two chromosomes, the ParA-like ATPase MipZ and FtsZ, we showed that chromosome 1 appears to be the "master" chromosome connecting DNA segregation and cell division, with MipZ being critical for coordination. MipZ shows an unexpected localization pattern, with MipZ monomers interacting with ParB of the chromosome 1 at the cell poles whereas MipZ dimers colocalize with FtsZ at midcell during constriction, both forming dynamic rings. These data suggest that MipZ has roles in R. sphaeroides in both controlling septation and coordinating chromosome segregation with cell division.


Subject(s)
Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Division , Chromosome Segregation , Chromosomes, Bacterial , Rhodobacter sphaeroides/cytology , Rhodobacter sphaeroides/physiology , Intravital Microscopy , Protein Transport
18.
J Mol Biol ; 430(24): 4971-4985, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30389436

ABSTRACT

During their lifecycle, bacteria are exposed to continuous changes in their environment, some of which are stressful and can be harmful. The cell envelope is the first line of defense against a hostile environment, but it is also the first target for damage. To deal with this problem, bacteria have evolved systems collectively called "envelope stress response," or ESR, dedicated to the detection and repair of damaged components. Here we decided to investigate whether the atypical two-component system ZraP-SR is a novel ESR. Based on the screening of more than 240 drugs using the Biolog technology, we show that the deletion of zraP or zraR confers increased susceptibility to five classes of antibiotics and to some environmental stress targeting the envelope. Using a microscopy approach, we also establish that ZraP and ZraR are required to maintain envelope integrity. So far, the ZraR regulator was only known to activate the transcription of zraP and zraSR. Using chromatin immunoprecipitation followed by sequencing and RT-qPCR, we have now identified 25 additional genes regulated by ZraR, the majority of which are involved in the response against stress. Taken together, our results demonstrate that ZraP-SR is a novel ESR.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Trans-Activators/genetics , Chromatin Immunoprecipitation , Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Sequence Analysis, RNA , Stress, Physiological , Trans-Activators/metabolism
19.
Methods Mol Biol ; 1431: 61-72, 2016.
Article in English | MEDLINE | ID: mdl-27283302

ABSTRACT

How is the bacterial chromosome organized within the bacterial cell? Over the last 60 years, a variety of approaches have been used to investigate this question. More recently, the parallel development of epifluorescence microscopy and genetic tools has enabled the direct visualization of the intracellular positioning of DNA sequences in live cells and has consequently revolutionized our view of the architecture of the nucleoid in vivo. In this chapter I present a comprehensive methodology designed to characterize the architecture of the nucleoid DNA and the positioning of specific DNA sequences in live Escherichia coli cells. DNA localization systems, preparation of stable agarose-mounted microscopy slides, and basic image analysis tools are mentioned.


Subject(s)
Chromosomes, Bacterial/ultrastructure , Escherichia coli/genetics , Image Processing, Computer-Assisted , Microscopy, Fluorescence
20.
Nucleic Acids Res ; 44(8): 3801-10, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27036863

ABSTRACT

Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering.


Subject(s)
CRISPR-Cas Systems , DNA Replication , Escherichia coli/genetics , CRISPR-Associated Proteins/metabolism , Chromosomes, Bacterial , Clustered Regularly Interspaced Short Palindromic Repeats , Escherichia coli/growth & development , Escherichia coli/metabolism , Plasmids/genetics , Replication Origin , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...