Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small Methods ; : e2301370, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098166

ABSTRACT

Mastering electrodes' formulations is a complex and tedious task, because for each composition of electroactive material(s) it is necessary to adjust the inactive additives nature and content to optimize battery performance. In this direction, the amount of binder is proposed to be adjusted to the surface developed by all of the powders involved in the composition of the electrode, i.e., the electroactive materials and electronic conductive additives. This concept, introduces here as binder-to-powders coverage ratio, relies upon the micromechanical models developed in the field of polymer-based composite materials. The validity of this new electrode formulation parameter is shown here for two different SiOx /Graphite blends, which differ in the type of graphite, and for blends of two different binders, polyacrylic acid and styrene-butadiene rubber. At the optimal coverage ratio, a satisfactory capacity retention is obtained in full cell with an ethylene carbonate free and fluoroethylene carbonate rich electrolyte.

2.
ACS Appl Mater Interfaces ; 15(12): 15509-15524, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36917122

ABSTRACT

A simple and versatile preparation of Zn(II)-poly(carboxylates) reticulated binders by the addition of Zn(II) precursors (ZnSO4, ZnO, or Zn(NO3)2) into a preoptimized poly(carboxylic acids) binder solution is proposed. These binders lead systematically to a significantly improved electrochemical performance when used for the formulation of silicon-based negative electrodes. The formation of carboxylate-Zn(II) coordination bonds formation is investigated by rheology and FTIR and NMR spectroscopies. Mechanical characterizations reveal that the coordinated binder offers a better electrode coating cohesion and adhesion to the current collector, as well as higher hardness and elastic modulus, which are even preserved in the presence of a carbonate solvent (i.e., in battery operation conditions). Ultimately, as shown from operando dilatometry experiments, the electrode expansion during lithiation is reduced, mitigating electrode mechanical failure. Such coordinatively reticulated electrodes outperform their uncoordinated counterparts with an improved capacity retention of over 30% after 60 cycles.

3.
ACS Appl Mater Interfaces ; 14(47): 52715-52728, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36394288

ABSTRACT

Silicon-containing Li-ion batteries have been the focus of many energy storage research efforts because of the promise of high energy density. Depending on the system, silicon generally demonstrates stable performance in half-cells, which is often attributed to the unlimited lithium supply from the lithium (Li) metal counter electrode. Here, the electrochemical performance of silicon with a high voltage NMC622 cathode was investigated in superconcentrated phosphonium-based ionic liquid (IL) electrolytes. As a matter of fact, there is very limited work and understanding of the full cell cycling of silicon in such a new class of electrolytes. The electrochemical behavior of silicon in the various IL electrolytes shows a gradual and steeper capacity decay, compared to what we previously reported in half-cells. This behavior is linked to a different evolution of the silicon morphology upon cycling, and the characterization of cycled electrodes points toward mechanical reasons, complete disconnection of part of the electrode, or internal mechanical stress, due to silicon and Li metal volume variation upon cycling, to explain the progressive capacity fading in full cell configuration. An extremely stable solid electrolyte interphase (SEI) in the full Li-ion cells can be seen from a combination of qualitative and quantitative information from transmission electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and magic angle spinning nuclear magnetic resonance. Our findings provide a new perspective to full cell interpretation regarding capacity fading, which is oftentimes linked almost exclusively to the loss of Li inventory but also more broadly, and provide new insights into the impact of the evolution of silicon morphology on the electrochemical behavior.

4.
Small Methods ; 6(10): e2200827, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35918781

ABSTRACT

The physical crosslinking of polymeric binders through coordination chemistry significantly improves the electrochemical performance of silicon-based negative electrodes. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy is used to probe the nanoscale morphology of such electrodes. This technique reveals the homogeneous coordination of carboxylated binder with Zn cations and its layering on the silicon surface. The solid electrolyte interphase (SEI) formed after the first cycle is denser with Zn-coordinated binder and preferentially observed on binder-depleted zones. The superiority of coordinated binders can be attributed to their capacity to better stabilize the electrode and the SEI layer due to improved mechanical properties. This results in a lower SEI impedance, a higher first cycle coulombic efficiency, and a 40% improvement of capacity retention after 50 cycles for highly loaded electrodes of over 6 mAh cm-2 .

5.
ACS Appl Mater Interfaces ; 13(24): 28304-28323, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34101424

ABSTRACT

The role of the physicochemical properties of the water-soluble polyacrylic acid (PAA) binder in the electrochemical performance of highly loaded silicon/graphite 50/50 wt % negative electrodes has been examined as a function of the neutralization degree x in PAAH1-xLix at the initial cycle in an electrolyte not containing ethylene carbonate. Electrode processing in the acidic PAAH binder at pH 2.5 leads to a deep copper corrosion, resulting in a significant electrode cohesion and adhesion to the current collector surface, but the strong binder rigidity may explain the big cracks occurring on the electrode surface at the first cycle. The nonuniform binder coating on the material surface leads to an important degradation of the electrolyte, explaining the lowest initial Coulombic efficiency and the lowest reversible capacity among the studied electrodes. When processed in neutral pH, the PAAH0.22Li0.78 binder forms a conformal artificial solid electrolyte interphase layer on the material surface, which minimizes the electrolyte reduction at the first cycle and then maximizes the initial Coulombic efficiency. However, the low mechanical resistance of the electrode and its strong cracking explain its low reversible capacity. Electrodes prepared at intermediate pH 4 combine the positive assets of electrodes prepared at acidic and neutral pH. They lead to the best initial performance with a notable areal capacity of 7.2 mA h cm-2 and the highest initial Coulombic efficiency of around 90%, a value much larger than the usual range reported for silicon/graphite anodes. All data obtained with complementary characterization techniques were discussed as a function of the PAA polymeric chain molecular conformation, microstructure, and surface adsorption or grafting, emphasizing the tremendous role of the binder in the electrode initial performance.

6.
ACS Appl Mater Interfaces ; 13(24): 28281-28294, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34114808

ABSTRACT

The latest advances in the stabilization of Li/Na metal battery and Li-ion battery cycling have highlighted the importance of electrode/electrolyte interface [solid electrolyte interphase (SEI)] and its direct link to cycling behavior. To understand the structure and properties of the SEI, we used combined experimental and computational studies to unveil how the ionic liquid (IL) cation nature and salt concentration impact the silicon/IL electrolyte interfacial structure and the formed SEI. The nature of the IL cation is found to be important to control the electrolyte reductive decomposition that influences the SEI composition and properties and the reversibility of the Li-Si alloying process. Also, increasing the Li salt concentration changes the interface structure for a favorable and less resistive SEI. The most promising interface for the Si-based battery was found to be in P1222FSI with 3.2 m LiFSI, which leads to an optimal SEI after 100 cycles in which LiF and trapped LiFSI are the only distinguishable lithiated and fluorinated products detected. This study shows a clear link between the nanostructure of the IL electrolyte near the electrode surface, the resulting SEI, and the Si negative electrode cycling performance. More importantly, this work will aid the rational design of Si-based Li-ion batteries using IL electrolytes in an area that has so far been neglected, reinforcing the benefits of superconcentrated electrolyte systems.

7.
ACS Appl Mater Interfaces ; 11(20): 18331-18341, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31035755

ABSTRACT

The understanding of the phenomena occurring during immersion of LiNi0.5Mn0.3Co0.2O2 (NMC) in water is helpful to devise new strategies toward the implementation of aqueous processing of this high-capacity cathode material. Immersion of NMC powder in water leads to both structural modification of the particles surface as observed by high-resolution scanning transmission electron microscopy and the formation of lithium-based compounds over the surface (LiOH, Li2CO3) in greater amount than after long-time exposure to ambient air, as confirmed by pH titration and 7Li MAS NMR analysis. The surface compounds adversely affect the electrochemical performance and are notably responsible for the alkaline pH of the aqueous slurry, which causes corrosion of the aluminum collector during coating of the electrode. The corrosion is avoided by adding phosphoric acid to the slurry as it lowers the pH, and it also enhances the cycling stability of the water-based electrodes due to the phosphate compounds formed at the particles surface, as evidenced by X-ray photoelectron spectroscopy analysis.

8.
ACS Appl Mater Interfaces ; 11(20): 18368-18376, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31020833

ABSTRACT

The lithium and lithium-ion battery electrode chemical stability in the pristine state has rarely been considered as a function of the binder choice and the electrode processing. In this work, X-ray photoelectron spectroscopy (XPS) and XPS imaging analyses associated with complementary Mössbauer spectroscopy are used in order to study the chemical stability of two pristine positive electrodes: (i) an extruded LiFePO4-based electrode formulated with different polymer matrices [polyethylene oxide and a polyvinylidene difluoride (PVdF)] and processed at different temperatures (90 and 130 °C, respectively) and (ii) a Li[Ni0.5Mn0.3Co0.2]O2 (NMC)-based electrode processed by tape-casting, followed by a mild or heavy calendering treatment. These analyses have allowed the identification of reactivity mechanisms at the interface of the active material and the polymer in the case of PVdF-based electrodes.

9.
Angew Chem Int Ed Engl ; 56(6): 1553-1556, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28044392

ABSTRACT

The discovery of conducting lithium-doped polyaniline with reversible redox chemistry allows simultaneous unprecedented capacity and stability in a non-aqueous Li battery. This compound (lithium emeraldinate) was synthesized by lithium-proton exchange on the emeraldine base in an anhydrous lithium-based electrolyte. A combination of UV/Vis-NIR spectroelectrochemistry, XPS, FTIR, and EQCM characterization allowed a unified description of the chemical and electrochemical behavior, showing facile charge delocalization of the doped states and the reversibility of the redox processes in this form of polyaniline. From a practical point of view, lithium emeraldinate behaves as a high-capacity organic active material (230 mAh g-1 ) that enables preparation of relatively thick composite electrodes with a low amount of carbon additives and high energy density (460 Wh kg-1 ). Concomitantly, at 1C rate, 400 cycles were achieved without significant capacity loss, while the coulombic efficiency is greater than 99 %.

10.
ChemSusChem ; 9(8): 841-8, 2016 04 21.
Article in English | MEDLINE | ID: mdl-26915951

ABSTRACT

Understanding the aging mechanism of silicon-based negative electrodes for lithium-ion batteries upon cycling is essential to solve the problem of low coulombic efficiency and capacity fading and further to implement this new high-capacity material in commercial cells. Nevertheless, such studies have so far focused on half cells in which silicon is cycled versus an infinite reservoir of lithium. In the present work, the aging mechanism of silicon-based electrodes is studied upon cycling in a full Li-ion cell configuration with LiCoO2 as the positive electrode. Postmortem analyses of both electrodes clearly indicate that neither one of them contains lithium and that no discernible degradation results from the cycling. The aging mechanism can be explained by the reduction of solvent molecules. Electrons extracted from the positive electrode are responsible for an internal imbalance in the cell, which results in progressive slippage of the electrodes and reduces the compositional range of cyclable lithium ions for both electrodes.


Subject(s)
Cobalt/chemistry , Electric Power Supplies , Lithium/chemistry , Oxides/chemistry , Silicon/chemistry , Electrodes
11.
Phys Chem Chem Phys ; 17(48): 32316-27, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26583805

ABSTRACT

The nonaqueous suspensions of carbon nanofibers (CNFs) in 1 M lithium bis(trifluoromethanesulfonaimide) in propylene carbonate electrolyte reveal unique structural evolution and shear-induced transition due to the high aspect ratio. The rheo-electrical behavior elucidates a microstructural transition from entangled-to-aggregated networks above a distinct percolation threshold. Under shear flow, both networks show a three-regime flow curve and an inverted-bell-like conductivity curve as a consequence of shear-induced alignment (entangled network) and shear-induced breaking up (aggregated network). The different particle morphology of carbon nanofibers (anisometric) and carbon black (CB; isometric) causes different aggregation mechanisms (aggregate vs. particulate) and then varied microstructure for their suspensions in the same electrolyte. This fact explains the higher rigidity and lower electric conductivity of CNFs than CB suspensions. Interestingly, the suspension of hybrid carbons at the optimum mixing ratio merges the advantages of both carbons to operate efficiently as precursors in the formulation of electrodes for energy storage systems.

12.
Langmuir ; 30(10): 2660-9, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24564804

ABSTRACT

Suspensions of carbon blacks and spherical carbon particles are studied experimentally and numerically to understand the role of the particle shape on the tendency to percolation. Two commercial carbon blacks and one lab-synthesized spherical carbon are used. The percolation thresholds in suspensions are experimentally determined by two complementary methods: impedance spectroscopy and rheology. Brownian dynamics simulations are performed to explain the experimental results taking into account the fractal shape of the aggregates in the carbon blacks. The results of Brownian dynamics simulations are in good agreement with the experimental results and allow one to explain the experimental behavior of suspensions.

13.
Phys Chem Chem Phys ; 15(34): 14476-86, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-23892887

ABSTRACT

We report on the rheological and electrical properties of non-aqueous carbon black (CB) suspensions at equilibrium and under steady shear flow. The smaller the primary particle size of carbon black is, the higher the magnitude of rheological parameters and the conductivity are. The electrical percolation threshold ranges seem to coincide with the strong gel rather than the weak gel rheological threshold ones. The simultaneous measurements of electrical properties under shear flow reveal the well-known breaking-and-reforming mechanism that characterises such complex fluids. The small shear rate breaks up the network into smaller agglomerates, which in turn transform into anisometric eroded ones at very high shear rates, recovering the network conductivity. The type of carbon black, its concentration range and the flow rate range are now precisely identified for optimizing the performance of a redox flow battery. A preliminary electrochemical study for a composite anolyte (CB/Li4Ti5O12) at different charge-discharge rates and thicknesses is shown.

14.
Langmuir ; 28(29): 10713-24, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22738282

ABSTRACT

Dilute aqueous suspensions of silicon nanoparticles and sodium carboxymethylcellulose salt (CMC) are studied experimentally and numerically by brownian dynamics simulations. The study focuses on the adsorption of CMC on silicon and on the aggregation state as a function of the suspension composition. To perform simulations, a coarse-grained model has first been developed for the CMC molecules. Then, this model has been applied to study numerically the behavior of suspensions of silicon and CMC. Simulation parameters have been fixed on the basis of experimental characterizations. Results of brownian dynamics simulations performed with our model are found in qualitative good agreement with experiments and allow a good description of the main features of the experimental behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...