Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(10): 105101, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962036

ABSTRACT

A quasilinear plasma transport theory that incorporates Fokker-Planck dynamical friction (drag) and pitch angle scattering is self-consistently derived from first principles for an isolated, marginally unstable mode resonating with an energetic minority species. It is found that drag fundamentally changes the structure of the wave-particle resonance, breaking its symmetry and leading to the shifting and splitting of resonance lines. In contrast, scattering broadens the resonance in a symmetric fashion. Comparison with fully nonlinear simulations shows that the proposed quasilinear system preserves the exact instability saturation amplitude and the corresponding particle redistribution of the fully nonlinear theory. Even in situations in which drag leads to a relatively small resonance shift, it still underpins major changes in the redistribution of resonant particles. This novel influence of drag is equally important in plasmas and gravitational systems. In fusion plasmas, the effects are especially pronounced for fast-ion-driven instabilities in tokamaks with low aspect ratio or negative triangularity, as evidenced by past observations. The same theory directly maps to the resonant dynamics of the rotating galactic bar and massive bodies in its orbit, providing new techniques for analyzing galactic dynamics.

2.
Phys Rev Lett ; 126(15): 155001, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929259

ABSTRACT

Fast-ion driven Alfvén waves with frequency close to the ion cyclotron frequency (f=0.58f_{ci}) excited by energetic ions from a neutral beam are stabilized via a controlled energetic ion density ramp for the first time in a fusion research plasma. The scaling of wave amplitude with injection rate is consistent with theory for single mode collisional saturation near marginal stability. The wave is identified as a shear-polarized global Alfvén eigenmode excited by Doppler-shifted cyclotron resonance with fast ions with sub-Alfvénic energetic ions, a first in fusion research plasmas.

SELECTION OF CITATIONS
SEARCH DETAIL
...