Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1278, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341406

ABSTRACT

Considering the importance of sustainable nuclear energy, effective management of radioactive nuclear waste, such as sequestration of radioiodine has inflicted a significant research attention in recent years. Despite the fact that materials have been reported for the adsorption of iodine, development of effective adsorbent with significantly improved segregation properties for widespread practical applications still remain exceedingly difficult due to lack of proper design strategies. Herein, utilizing unique hybridization synthetic strategy, a composite crystalline aerogel material has been fabricated by covalent stepping of an amino-functionalized stable cationic discrete metal-organic polyhedra with dual-pore containing imine-functionalized covalent organic framework. The ultralight hybrid composite exhibits large surface area with hierarchical macro-micro porosity and multifunctional binding sites, which collectively interact with iodine. The developed nano-adsorbent demonstrate ultrahigh vapor and aqueous-phase iodine adsorption capacities of 9.98 g.g-1 and 4.74 g.g-1, respectively, in static conditions with fast adsorption kinetics, high retention efficiency, reusability and recovery.

2.
Chem Sci ; 14(38): 10591-10601, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799985

ABSTRACT

One-pot cascade catalytic reactions easily allow the circumvention of pitfalls of traditional catalytic reactions, such as multi-step syntheses, longer duration, waste generation, and high operational cost. Despite advances in this area, the facile assimilation of chemically antagonistic bifunctional sites in close proximity inside a well-defined scaffold via a process of rational structural design still remains a challenge. Herein, we report the successful fusion of incompatible acid-base active sites in an ionic porous organic polymer (iPOP), 120-MI@OH, via a simple ion-exchange strategy. The fabricated polymer catalyst, 120-MI@OH, performed exceedingly well as a cascade acid-base catalyst in a deacetylation-Knoevenagel condensation reaction under mild and eco-friendly continuous flow conditions. In addition, the abundance of spatially isolated distinct acidic (imidazolium cations) and basic (hydroxide anions) catalytic sites give 120-MI@OH its excellent solid acid and base catalytic properties. To demonstrate the practical relevance of 120-MI@OH, stable millimeter-sized spherical composite polymer bead microstructures were synthesized and utilized in one-pot cascade catalysis under continuous flow, thus illustrating promising catalytic activity. Additionally, the heterogeneous polymer catalyst displayed good recyclability, scalability, as well as ease of fabrication. The superior catalytic activity of 120-MI@OH can be rationalized by its unique structure that reconciles close proximity of antagonistic catalytic sites that are sufficiently isolated in space.

3.
Angew Chem Int Ed Engl ; 62(1): e202214095, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36345663

ABSTRACT

In case of pollutant segregation, fast mass diffusion is a fundamental criterion in order to achieve improved performance. The rapid mass transport through porous materials can be achieved by availing large open pores followed by easy and complete accessibility of functional sites. Inducing macroporosity into such materials could serve as ideal solution providing access to large macropores that offer unhindered transport of analyte and full exposure to interactive sites. Moreover, the challenge to configure the ionic-functionality with macroporosity could emerge as an unparalleled avenue toward pollutants separation. Herein, we strategized a synthetic protocol for construction of a positively charged hierarchically-porous ordered interconnected macro-structure of organic framework where the size and number of macropores can easily be tuned. The ordered macropores with strong electrostatic interaction synergistically exhibited ultrafast removal efficiency towards various toxic pollutants.

4.
J Org Chem ; 87(24): 16655-16664, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36426632

ABSTRACT

Aggregation-induced catalyst deactivation during the reaction in supported metal catalysts prevails as one of the pitfalls toward their practical implementation. Herein, a homogeneously dispersed palladium-coordinated N-heterocyclic carbene (NHC) was strategically integrated inside a microporous hyper-cross-linked polymer via post-synthesis structural modulation. Successful immobilization of spatially isolated Pd (II) units onto the polymer scaffold yielded highly robust heterogeneous catalysts 120-MI@Pd NHC and 120-EI@Pd NHC, respectively. 120-EI@NHC Pd (4.41 wt % Pd) illustrated a remarkable catalytic potency (yield up to >99%) toward the eco-friendly Suzuki-Miyaura coupling (SMC) reaction at room temperature. The superior catalytic efficiency of 120-EI@Pd NHC is further highlighted from its excellent functionality tolerance over 42 substrates bearing electronic diversity and a turnover frequency value reaching up to 4.97 × 103 h-1 at a very low catalyst dosage of 0.04 mol %. Pertaining to heterogenization, the polymer catalyst could be easily reused with intact catalytic efficiency for at least 10 cycles. The catalytic competence of 120-EI@NHC Pd in terms of scope, scalability, and sustainability advocates its proficiency, while processability was achieved by crafting 3D aerogel monoliths. The conceptual feasibility was further investigated by devising a cup-based nano-reactor with gram-scale product isolation over three catalytic cycles.

5.
Chempluschem ; 87(11): e202200212, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36066453

ABSTRACT

Large-scale nuclear power plant production of iodine radionuclides (129 I, 131 I) pose huge threat in the events of nuclear disaster. Effective removal of radioiodine from nuclear waste is one of the most critical challenge because of the drawbacks of state-of-the-art adsorbents such as high cost, low uptake capacity and non-recyclability. Herein, two hydroxy-functionalized (-OH) hypercrosslinked polymers (HCPs), namely HCP-91 and HCP-92, have been synthesized and employed towards capture of iodine. High chemical stability along with synergistic harmony of high porosity and functionality of these materials makes them suitable candidates for capture of iodine from both vapor phase and water medium. Moreover, both the HCPs showed superior iodine removal performance from water in terms of fast kinetics and high removal efficiency (2.9 g g-1 and 2.49 g g-1 for HCP-91 and HCP-92 respectively). The role of functionality (-OH groups) and porosity has been established with the help of HCP-91, HCP-92 and non-functionalized biphenyl HCP for the efficient capture of I3 - ions from water. In addition, both HCPs exhibited excellent selectivity and recyclability towards triiodide ions, rendering the potential of these materials towards real-time applications. Lastly, Density functional theoretical studies revealed key insights and corroborate well with the experimental findings.

6.
ACS Appl Mater Interfaces ; 13(43): 51474-51484, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34669390

ABSTRACT

A cationic microporous composite polymer (120-TMA@Fe) bearing free exchangeable chloride anions alongside easy magnetic separation was crafted through post-polymerization structure modulation. The precursor polymer 120-Cl was synthesized via an "external cross-linking" strategy in a straightforward one-pot Friedel-Crafts reaction. Subsequently, a cationic network accommodating magnetic Fe3O4 nanoparticles, viz., 120-TMA@Fe was fabricated through chemical modifications. 120-TMA@Fe displayed excellent adsorption proficiency both in terms of rapid kinetics and maximum uptake capacity when screened for a wide range of organic micropollutants of various categories. Amongst the tested pollutants, including anionic dyes, aromatic models, plastic components, and pharmaceuticals, 120-TMA@Fe illustrated exceptional performance in removing all of these model pollutants with adsorption equilibrium reaching within only 5 min. The Langmuir adsorption isotherm model determined the theoretical maximum uptake capacity (qmax,e) of 120-TMA@Fe to be 357 mg g-1 for methyl orange dye, 555 mg g-1 for plasticizer bisphenol A, and 285 mg g-1 for antibiotic ibuprofen. Additionally, 120-TMA@Fe showed unaltered performance upon harsh chemical treatment as well as in complex real-world samples. The potency of 120-TMA@Fe was further supported by its outstanding regeneration performance up to 10 cycles.

7.
ACS Appl Mater Interfaces ; 13(29): 34188-34196, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279084

ABSTRACT

Large-scale generation of radioactive iodine (129I, 131I) in nuclear power plants pose a critical threat in the event of fallout, thus rendering the development of iodine sequestering materials (from both the vapor and aqueous medium) highly pivotal. Herein, we report two chemically stable ionic polymers containing multiple binding sites, including phenyl rings, imidazolium cations, and bromide anions, which in synergy promote adsorption of iodine/triiodide anions. In brief, exceptional iodine uptake (from the vapor phase) was observed at nuclear fuel reprocessing conditions. Furthermore, the ionic nature propelled removal of >99% of I3- from water within 30 min. Additionally, benchmark uptake capacities, as well as unprecedented selectivity, were observed for I3-anions. The excellent affinity (distribution coefficient, ∼105 mL/g) enabled iodine capture from seawater-spiked samples. Moreover, iodine-loaded compounds showed conductivity (10-4 S/cm, 10-6 S/cm), placing them among the best known conducting porous organic polymers. Lastly, DFT studies unveiled key insights in coherence with the experimental findings.

8.
Chemistry ; 27(53): 13442-13449, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34259357

ABSTRACT

Fabricating new and efficient materials aimed at containment of water contamination, in particular removing toxic heavy metal based oxo-anions (e. g. CrO4 2- , TcO4 - ) holds paramount importance. In this work, we report two new highly stable imidazolium based ionic porous organic polymers (iPOPs) decorated with multiple interaction sites along with electrostatics driven adsorptive removal of such oxo-anions from water. Both the iPOPs (namely, iPOP-3 and iPOP-4) exhibited rapid sieving kinetics and very high saturation uptake capacity for CrO4 2- anions (170 and 141 mg g-1 for iPOP-3 and iPOP-4 respectively) and ReO4 - (515.5 and 350.3 mg g-1 for iPOP-3 and iPOP-4 respectively), where ReO4 - anions being the non-radioactive surrogative counterpart of radioactive TcO4 - ions. Noticeably, both iPOPs showed exceptional selectivity towards CrO4 2- and ReO4 - even in presence of several other concurrent anions such as Br- , Cl- , SO4 2- , NO3 - etc. The theoretical binding energy calculations via DFT method further confirmed the preferential interaction sites as well as binding energies of both iPOPs towards CrO4 2- and ReO4 - over all other competing anions which corroborates with the experimental high capacity and selectivity of iPOPs toward such oxo-anions.


Subject(s)
Environmental Pollutants , Water , Anions , Polymers , Porosity
9.
Chem Rec ; 21(7): 1666-1680, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34137495

ABSTRACT

Water pollution and crisis of freshwater is one of the most alarming concern globally, which threatens the development and survival of living beings. Recycling of contaminated water has been the prime demand of 21st century as the area of contamination in natural waterbodies increasing rapidly worldwide. Detoxification and purification of wastewater via adsorptive removal technology has been proven to be more efficient because of it's simplicity, lesser complexity and cost-effectiveness. As the most rapid-growing division of coordination chemistry, porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) with the liberty of crafting tailorable porous architecture and presence of numerous functional sites have become quintessential for recognition and sequestration of water pollutants. This personal account intends to highlight our recent contributions in the field of sensing and sequestration of toxic aquatic inorganic pollutants by functionalized water stable MOFs.

10.
Dalton Trans ; 50(29): 10133-10141, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34190294

ABSTRACT

Water pollution from heavy metals and their toxic oxo-anionic derivatives such as CrO42-, Cr2O72-, HAsO42-, and HAsO32- has become one of the most critical environmental issues. To address this, herein, we report a new hydrolytically stable luminescent Zn(ii) based cationic metal organic framework (MOF), iMOF-4C, which further successfully exhibited a rare dual "turn off/on" fluorescence response toward Cr(vi), As(v) and As(iii) based oxo-anions respectively in water medium. In addition, iMOF-4C was found to maintain its superior selectivity in the presence of other concurrent anions (e.g. SO42-, Cl-, Br-, ClO4-, NO3-, SCN- and CO32-). More importantly, iMOF-4C exhibited an excellent selective and sensitive luminescence "turn-off" response towards CrO42- and Cr2O72- anions in water medium with the quenching constant (Ksv) values as high as 1.31 × 105 M-1 (CrO42-) and 4.85 × 105 M-1 (Cr2O72-), which are found to be the highest among the values reported in the regime of MOFs. Interestingly, iMOF-4C showed fluorescence "turn-on" response toward HAsO42- and HAsO32- with an enhancement coefficient (Kec) of 1.98 × 104 M-1 and 3.56 × 103 M-1 respectively. The high sensitivity and low detection limits make iMOF-4C more feasible for real-time sensing of such toxic oxo-anions in an aqueous medium. Furthermore, the probable sensing mechanism has been investigated by DFT calculation studies and discussed in detail.

11.
ACS Appl Mater Interfaces ; 12(37): 41810-41818, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32830959

ABSTRACT

Water contamination due to heavy metal-based toxic oxo-anions (such as CrO42- and TcO4-) is a critical environmental concern that demands immediate mitigation. Herein, we present an effort to counter this issue by a novel chemically stable cationic metal-organic framework (iMOF-2C) with strategic utilization of a ligand with hydrophobic core, known to facilitate such oxo-anion capture process. Moreover, the compound exhibited very fast sieving kinetics for such oxo-anions and a very high uptake capacity for CrO42- (476.3 mg g-1) and ReO4- (691 mg g-1), while the latter being employed as a surrogate analogue for radioactive TcO4- anions. Notably, the compound showed excellent selectivity even in the presence of other competing anions such as NO3-, Cl-, SO42-, ClO4-. etc.. Furthermore, the compound possesses excellent reusability (up to 10 cycles) and is also employed to a stationary phase ion column to decontaminate the aforementioned oxo-anions from water.

SELECTION OF CITATIONS
SEARCH DETAIL
...