Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 4: 249, 2013.
Article in English | MEDLINE | ID: mdl-24065960

ABSTRACT

Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe(2) (+), and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c 1-cytochrome subunit of the cytochrome bc 1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

2.
Biodegradation ; 20(1): 45-53, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18470655

ABSTRACT

Anaerobic, bacterial reduction of water-soluble U(VI) complexes to the poorly soluble U(IV) mineral uraninite has been intensively studied as a strategy for in situ remediation of uranium-contaminated groundwater. A novel and potentially counteracting metabolic process, anaerobic, nitrate-dependent U(IV) oxidation, has recently been described in two bacterial species (Geobacter metallireducens and Thiobacillus denitrificans), but the underlying biochemistry and genetics are completely unknown. We report here that two diheme, c-type cytochromes (putatively c(4) and c(5) cytochromes) play a major role in nitrate-dependent U(IV) oxidation by T. denitrificans. Insertion mutations in each of the two genes encoding these cytochromes resulted in a greater than 50% decrease in U(IV) oxidation activity, and complementation in trans restored activity to wild-type levels. Sucrose-density-gradient ultracentrifugation confirmed that both cytochromes are membrane-associated. Insertion mutations in genes encoding other membrane-associated, c-type cytochromes did not diminish U(IV) oxidation. This is the first report of proteins involved in anaerobic U(IV) oxidation.


Subject(s)
Cytochrome c Group/metabolism , Oxidation-Reduction , Thiobacillus/metabolism , Uranium/metabolism , Anaerobiosis , Biodegradation, Environmental , Nitrates/metabolism , Ultracentrifugation
3.
Appl Environ Microbiol ; 73(10): 3265-71, 2007 May.
Article in English | MEDLINE | ID: mdl-17337560

ABSTRACT

Thiobacillus denitrificans is a widespread, chemolithoautotrophic bacterium with an unusual and environmentally relevant metabolic repertoire, which includes its ability to couple denitrification to sulfur compound oxidation; to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV); and to oxidize mineral electron donors. Recent analysis of its genome sequence also revealed the presence of genes encoding two [NiFe]hydrogenases, whose role in metabolism is unclear, as the sequenced strain does not appear to be able to grow on hydrogen as a sole electron donor under denitrifying conditions. In this study, we report the development of a genetic system for T. denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. The antibiotic sensitivity of T. denitrificans was characterized, and a procedure for transformation with foreign DNA by electroporation was established. Insertion mutations were generated by in vitro transposition, the mutated genes were amplified by the PCR, and the amplicons were introduced into T. denitrificans by electroporation. The IncP plasmid pRR10 was found to be a useful vector for complementation. The effectiveness of the genetic system was demonstrated with the hynL gene, which encodes the large subunit of a [NiFe]hydrogenase. Interruption of hynL in a hynL::kan mutant resulted in a 75% decrease in specific hydrogenase activity relative to the wild type, whereas complementation of the hynL mutation resulted in activity that was 50% greater than that of the wild type. The availability of a genetic system in T. denitrificans will facilitate our understanding of the genetics and biochemistry underlying its unusual metabolism.


Subject(s)
Genetics, Microbial/methods , Mutagenesis, Insertional , Thiobacillus/genetics , Thiobacillus/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Electroporation , Gene Deletion , Genetic Complementation Test , Genetic Vectors , Hydrogenase/genetics , Hydrogenase/metabolism , Plasmids/genetics , Recombination, Genetic , Thiobacillus/drug effects , Transformation, Bacterial
4.
J Bacteriol ; 188(19): 7005-15, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16980503

ABSTRACT

Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with key chemolithoautotrophic functions (such as sulfur compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately 10% of the genome) as differentially expressed using RMA (robust multiarray average) statistical analysis and a twofold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated, respectively, with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription-quantitative PCR analysis was used to validate these trends.


Subject(s)
Gene Expression Profiling , Genome, Bacterial , Thiobacillus/genetics , Thiobacillus/metabolism , Thiosulfates/metabolism , Transcription, Genetic , Adaptation, Physiological , Aerobiosis , Anaerobiosis , Genes, Bacterial , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , RNA, Bacterial/analysis , RNA, Bacterial/genetics , Up-Regulation
5.
J Bacteriol ; 188(4): 1473-88, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16452431

ABSTRACT

The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, beta-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by beta-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.


Subject(s)
Genome, Bacterial , Thiobacillus/genetics , Bacterial Proteins/genetics , Cytochromes c/genetics , Hydrogenase/genetics , Ion Transport/genetics , Metals, Heavy/pharmacology , Molecular Sequence Data , Oxidation-Reduction , Sulfur Compounds/metabolism , Thiobacillus/drug effects , Thiobacillus/metabolism , Uranium/metabolism
6.
Mol Microbiol ; 49(1): 211-8, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12823822

ABSTRACT

Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Energy Transfer , Escherichia coli Proteins , Escherichia coli/metabolism , Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biological Transport/physiology , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Cell Fractionation , Escherichia coli/cytology , Indicators and Reagents/chemistry , Indicators and Reagents/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics
7.
J Bacteriol ; 184(6): 1640-8, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11872715

ABSTRACT

The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B(12) across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Lipoproteins , Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation , Protein Binding , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...