Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 01 23.
Article in English | MEDLINE | ID: mdl-36688373

ABSTRACT

Individual sensory neurons can be tuned to many stimuli, each driving unique, stimulus-relevant behaviors, and the ability of multimodal nociceptor neurons to discriminate between potentially harmful and innocuous stimuli is broadly important for organismal survival. Moreover, disruptions in the capacity to differentiate between noxious and innocuous stimuli can result in neuropathic pain. Drosophila larval class III (CIII) neurons are peripheral noxious cold nociceptors and innocuous touch mechanosensors; high levels of activation drive cold-evoked contraction (CT) behavior, while low levels of activation result in a suite of touch-associated behaviors. However, it is unknown what molecular factors underlie CIII multimodality. Here, we show that the TMEM16/anoctamins subdued and white walker (wwk; CG15270) are required for cold-evoked CT, but not for touch-associated behavior, indicating a conserved role for anoctamins in nociception. We also evidence that CIII neurons make use of atypical depolarizing chloride currents to encode cold, and that overexpression of ncc69-a fly homologue of NKCC1-results in phenotypes consistent with neuropathic sensitization, including behavioral sensitization and neuronal hyperexcitability, making Drosophila CIII neurons a candidate system for future studies of the basic mechanisms underlying neuropathic pain.


Subject(s)
Drosophila Proteins , Neuralgia , Animals , Drosophila/physiology , Chlorides , Drosophila Proteins/metabolism , Nociception/physiology , Nociceptors/physiology , Sensory Receptor Cells/physiology , Anoctamins
2.
Development ; 148(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34322714

ABSTRACT

Dendrite shape impacts functional connectivity and is mediated by organization and dynamics of cytoskeletal fibers. Identifying the molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding the mechanistic links between cytoskeletal organization and neuronal function. We identified Formin 3 (Form3) as an essential regulator of cytoskeletal architecture in nociceptive sensory neurons in Drosophila larvae. Time course analyses reveal that Form3 is cell-autonomously required to promote dendritic arbor complexity. We show that form3 is required for the maintenance of a population of stable dendritic microtubules (MTs), and mutants exhibit defects in the localization of dendritic mitochondria, satellite Golgi, and the TRPA channel Painless. Form3 directly interacts with MTs via FH1-FH2 domains. Mutations in human inverted formin 2 (INF2; ortholog of form3) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons result in severe impairment of noxious heat-evoked behaviors. Expression of the INF2 FH1-FH2 domains partially recovers form3 defects in MTs and nocifensive behavior, suggesting conserved functions, thereby providing putative mechanistic insights into potential etiologies of CMT sensory neuropathies.


Subject(s)
Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Formins/metabolism , Microtubules/metabolism , Neuronal Plasticity/genetics , Nociception , Actins/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal , Cytoskeleton/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Formins/genetics , Humans , Mutation , Nociceptors/metabolism , Transgenes
3.
iScience ; 24(6): 102657, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151240

ABSTRACT

Low temperatures can be fatal to insects, but many species have evolved the ability to cold acclimate, thereby increasing their cold tolerance. It has been previously shown that Drosophila melanogaster larvae perform cold-evoked behaviors under the control of noxious cold-sensing neurons (nociceptors), but it is unknown how the nervous system might participate in cold tolerance. Herein, we describe cold-nociceptive behavior among 11 drosophilid species; we find that the predominant cold-evoked larval response is a head-to-tail contraction behavior, which is likely inherited from a common ancestor, but is unlikely to be protective. We therefore tested the hypothesis that cold nociception functions to protect larvae by triggering cold acclimation. We found that Drosophila melanogaster Class III nociceptors are sensitized by and critical to cold acclimation and that cold acclimation can be optogenetically evoked, sans cold. Collectively, these findings demonstrate that cold nociception constitutes a peripheral neural basis for Drosophila larval cold acclimation.

4.
J Undergrad Neurosci Educ ; 19(1): A21-A29, 2020.
Article in English | MEDLINE | ID: mdl-33880089

ABSTRACT

Herein we discuss a Course-Based Undergraduate Research Experience (CURE) developed in order to engage novice undergraduates in active learning and discovery-driven original research. This course leverages the powerful genetic toolkits available for Drosophila melanogaster in order to investigate the cellular and molecular bases of cold nociception. Given the relatively inexpensive nature of Drosophila rearing, a growing suite of publicly available neurogenomic data, large collections of transgenic stocks available through community stock centers, and Drosophila's highly stereotyped behaviors, this CURE design constitutes a cost-effective approach to introduce students to principles and techniques in genetics, genomics, behavioral neuroscience, research design, and scientific presentation. Moreover, we discuss how this paradigm might be adapted for continued use in investigating any number of systems and/or behaviors - a property we posit is key to impactful CURE design.

5.
Philos Trans R Soc Lond B Biol Sci ; 374(1785): 20190369, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31544603

ABSTRACT

Transient receptor potential (TRP) cation channels are highly conserved, polymodal sensors which respond to a wide variety of stimuli. Perhaps most notably, TRP channels serve critical functions in nociception and pain. A growing body of evidence suggests that transient receptor potential melastatin (TRPM) and transient receptor potential ankyrin (TRPA) thermal and electrophile sensitivities predate the protostome-deuterostome split (greater than 550 Ma). However, TRPM and TRPA channels are also thought to detect modified terpenes (e.g. menthol). Although terpenoids like menthol are thought to be aversive and/or harmful to insects, mechanistic sensitivity studies have been largely restricted to chordates. Furthermore, it is unknown if TRP-menthol sensing is as ancient as thermal and/or electrophile sensitivity. Combining genetic, optical, electrophysiological, behavioural and phylogenetic approaches, we tested the hypothesis that insect TRP channels play a conserved role in menthol sensing. We found that topical application of menthol to Drosophila melanogaster larvae elicits a Trpm- and TrpA1-dependent nocifensive rolling behaviour, which requires activation of Class IV nociceptor neurons. Further, in characterizing the evolution of TRP channels, we put forth the hypotheses that three previously undescribed TRPM channel clades (basal, αTRPM and ßTRPM), as well as TRPs with residues critical for menthol sensing, were present in ancestral bilaterians. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.


Subject(s)
Drosophila melanogaster/physiology , Insect Proteins/genetics , Menthol , Nociception , Transient Receptor Potential Channels/genetics , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Insect Proteins/metabolism , Larva/genetics , Larva/physiology , Menthol/metabolism , Pain Perception , Transient Receptor Potential Channels/metabolism
6.
Genetics ; 207(4): 1401-1421, 2017 12.
Article in English | MEDLINE | ID: mdl-29025914

ABSTRACT

Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation.


Subject(s)
Dendrites/genetics , Drosophila Proteins/genetics , Homeodomain Proteins/genetics , Morphogenesis/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Actins/genetics , Animals , Cytoskeleton/genetics , Dendrites/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Microtubules/genetics
7.
Methods Mol Biol ; 823: 279-93, 2012.
Article in English | MEDLINE | ID: mdl-22081352

ABSTRACT

Individualized therapy using adult stem cells constitutes a revolutionary vision for molecular medicine of the future. The field of stem cell biology has accelerated dramatically such that it now appears feasible to treat an individual patient's disease with native or modified stem cells collected from the same patient. Neurodegenerative disease is a high-priority goal for stem cell therapy due to the tremendous clinical urgency to reduce the worldwide suffering associated with this class of diseases. This chapter focuses on adult neural stem cells as a prototype for the general field of adult stem cell therapy. Studies of the origin and function of neural stem cells reveals that the adult brain can generate new neurons. This finding provides the rationale for the therapeutic application of adult neural stem cells to treat neuronal damage or loss. Experimental progress in treating Parkinson's disease is discussed in some detail as an example of one of the most promising areas for adult neural stem cell therapy. Methods for neural stem cell isolation and propagation are included.


Subject(s)
Cell Separation/methods , Neural Stem Cells/cytology , Primary Cell Culture/methods , Adult , Animals , Brain/metabolism , Cell Differentiation , Dissection/methods , Humans , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neurodegenerative Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...