Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
ACS ES T Water ; 4(4): 1483-1497, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633367

ABSTRACT

Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.

2.
Mar Pollut Bull ; 185(Pt B): 114360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36413931

ABSTRACT

Photooxidation can alter the environmental fate and effects of spilled oil. To better understand this process, oil slicks were generated on seawater mesocosms and exposed to sunlight for 8 days. The molecular composition of seawater under irradiated and non-irradiated oil slicks was characterized using ion mobility spectrometry-mass spectrometry and polyaromatic hydrocarbons analyses. Biomimetic extraction was performed to quantify neutral and ionized constituents. Results show that seawater underneath irradiated oil showed significantly higher amounts of hydrocarbons with oxygen- and sulfur-containing by-products peaking by day 4-6; however, concentrations of dissolved organic carbon were similar. Biomimetic extraction indicated toxic units in irradiated mesocosms increased, mainly due to ionized components, but remained <1, suggesting limited potential for ecotoxicity. Because the experimental design mimicked important aspects of natural conditions (freshly collected seawater, natural sunlight, and relevant oil thickness and concentrations), this study improves our understanding of the effects of photooxidation during a marine oil spill.


Subject(s)
Petroleum Pollution , Petroleum , Sunlight , Water , Seawater
3.
Environ Toxicol Chem ; 41(12): 3070-3083, 2022 12.
Article in English | MEDLINE | ID: mdl-36102847

ABSTRACT

Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Water Pollutants, Chemical , Animals , Temperature , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Ecotoxicology , Hydrocarbons/toxicity , Hydrophobic and Hydrophilic Interactions
4.
Environ Toxicol Chem ; 41(7): 1613-1622, 2022 07.
Article in English | MEDLINE | ID: mdl-35394645

ABSTRACT

Biomimetic extraction using solid-phase microextraction is a passive sampling analytical method that can predict the aquatic toxicity of complex petroleum substances. The method provides a nonanimal alternative to traditional bioassays with the potential to reduce both vertebrate and invertebrate aquatic toxicity testing. The technique uses commercially available polydimethylsiloxane-coated fibers that, following nondepletive extraction of water samples, are injected into a gas chromatograph with flame ionization detection. As the predictive nature of the method is operationally defined, it is critical that its application be harmonized with regard to extraction, analysis, and standardization parameters. Results are presented from a round robin program comparing the results from 10 laboratories analyzing four different sample sets of dissolved organics in water. Samples included two incurred oil sands process-affected waters and a cracked gas oil water accommodated fraction. A fourth sample of cracked gas oil blended in an oil sands process-affected water was analyzed to demonstrate the method's ability to differentiate between neutral and ionizable dissolved hydrocarbons. Six of the 10 laboratories applied an automated version of the method using a robotic autosampler where the critical extraction steps are precisely controlled and which permits batch screening of water samples for aquatic toxicity potential. The remaining four laboratories performed the solid-phase microextraction manually. The automated method demonstrated good reproducibility with between-laboratory variability across the six laboratories and four samples yielding a mean relative standard deviation of 14%. The corresponding between-laboratory variability across the four laboratories applying the manual extraction was 53%, demonstrating the importance of precisely controlling the extraction procedure. Environ Toxicol Chem 2022;41:1613-1622. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Biomimetics/methods , Reproducibility of Results , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
BMC Chem ; 15(1): 52, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526066

ABSTRACT

Water solubility is perhaps the single most important physical-chemical property determining the environmental fate and effects of organic compounds. Its determination is particularly challenging for compounds with extremely low solubility, frequently referred to as "difficult-to-test" substances and having solubility's generally less than 0.1 mg/L. The existing regulatory water solubility test for these compounds is the column elution method. Its applicability, however, is limited, to non-volatile solid or crystalline hydrophobic organic compounds. There currently exists no test guideline for measuring the water solubility of very hydrophobic liquid, and potentially volatile, difficult-to-test compounds. This paper describes a "slow-stir" water solubility methodology along with results of a ring trial across five laboratories evaluating the method's performance. The slow-stir method was applied to n-hexylcyclohexane, a volatile, liquid hydrophobic hydrocarbon. In order to benchmark the inter-laboratory variability associated with the proposed slow-stir method, the five laboratories separately determined the solubility of dodecahydrotriphenylene, a hydrophobic solid compound using the existing column elution guideline. Results across the participating laboratories indicated comparable reproducibility with relative standard deviations (RSD) of 20% or less reported for each test compound - solubility method pair. The inter-laboratory RSD was 16% for n-hexylcyclohexane (mean 14 µg/L, n = 5) using the slow-stir method. For dodecahydrotriphenylene, the inter-laboratory RSD was 20% (mean 2.6 µg/L, n = 4) using the existing column elution method. This study outlines approaches that should be followed and the experimental parameters that have been deemed important for an expanded ring trial of the slow-stir water solubility method.

6.
Chemosphere ; 265: 129174, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340835

ABSTRACT

Reliable delineation of aquatic toxicity cut-offs for poorly soluble hydrocarbons is lacking. In this study, vapor and passive dosing methods were applied in limit tests with algae and daphnids to evaluate the presence or absence of chronic effects at exposures corresponding to the water solubility for representative hydrocarbons from five structural classes: branched alkanes, mono, di, and polynaphthenic (cyclic) alkanes and monoaromatic naphthenic hydrocarbons (MANHs). Algal growth rate and daphnid immobilization, growth and reproduction served as the chronic endpoints investigated. Results indicated that the dosing methods applied were effective for maintaining mean measured exposure concentrations within a factor of two or higher of the measured water solubility of the substances investigated. Chronic effects were not observed for hydrocarbons with an aqueous solubility below approximately 5 µg/L. This solubility cut-off corresponds to structures consisting of 13-14 carbons for branched and cyclic alkanes and 16-18 carbons for MANHs. These data support reliable hazard and risk evaluation of hydrocarbon classes that comprise petroleum substances and the methods described have broad applicability for establishing empirical solubility cut-offs for other classes of hydrophobic substances. Future work is needed to understand the role of biotransformation on the observed presence or absence of toxicity in chronic tests.


Subject(s)
Petroleum , Water Pollutants, Chemical , Hydrocarbons/toxicity , Hydrophobic and Hydrophilic Interactions , Petroleum/toxicity , Solubility , Toluene , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Chemosphere ; 266: 129017, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33261842

ABSTRACT

This work describes a novel application of atmospheric pressure gas chromatography time-of-flight mass spectrometry (APGC-TOF-MS) combined with solid-phase microextraction (SPME) for the simultaneous analysis of hydrocarbons and naphthenic acids (NAs) species in raw and ozone-treated oil sands process water (OSPW). SPME method using polydimethylsiloxane (PDMS)-coated fibers was validated using gas chromatography with flame ionization detector (GC-FID) to ensure the SPME extractions were operated appropriately. The ionization pathways of the hydrocarbon species in OSPW in the APGC source were verified by analyzing a mixture of eight polyaromatic hydrocarbons which were ionized primarily via charge transfer to produce [M+] while NAs in OSPW were found to be ionized through protonation to generate [MH+] in the wet APGC source. SPME/APGC-TOF-MS analysis demonstrated a different composition profile in OSPW #1, with 74.5% of hydrocarbon species, 23.4% of O2-NAs, and 2.1% of the oxidized NA species at extraction pH 2.0 compared with that obtained by UPLC-TOF-MS analysis (36.9% of O2-NAs, 26.8% of O3-NAs, 24.9% of O4-NAs, 9.1% of O5-NAs, 2.3% of O6-NAs). Moreover, the peak areas of the total NAs and the total peak areas of NAs + hydrocarbons measured by SPME/APGC-TOF-MS correlated excellently with the total NA concentration determined by UPLC-TOF-MS (R2 = 0.90) and the concentrations of the total acid-extractable organics determined by SPME/GC-FID (R2 = 0.98), respectively. APGC-TOF-MS integrated with the SPME techniques could extend the range of target compounds and be a promising alternative to evaluate and characterize NAs and hydrocarbon in different water types.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Atmospheric Pressure , Carboxylic Acids/analysis , Gas Chromatography-Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
8.
Environ Toxicol Chem ; 39(1): 171-188, 2020 01.
Article in English | MEDLINE | ID: mdl-31546284

ABSTRACT

The Organisation for Economic Co-operation and Development guideline 305 for bioaccumulation testing in fish includes the option to conduct a dietary test for assessing a chemical's bioaccumulation behavior. However, the one-compartment toxicokinetic model that is used in the guidelines to analyze the results from dietary bioaccumulation tests is not consistent with the current state of the science, experimental practices, and information needs for bioaccumulation and risk assessment. The present study presents 1) a 2-compartment toxicokinetic modeling framework for describing the bioaccumulation of neutral hydrophobic organic chemicals in fish and 2) an associated toxicokinetic analysis tool (absorption, distribution, metabolism, and excretion [ADME] B calculator) for the analysis and interpretation of dietary bioaccumulation test data from OECD-305 dietary tests. The model framework and ADME-B calculator are illustrated by analysis of fish dietary bioaccumulation test data for 238 substances representing different structural classes and susceptibilities to biotransformation. The ADME of the chemicals is determined from dietary bioaccumulation tests and bioconcentration factors, biomagnification factors, and somatic and intestinal biotransformation rates. The 2-compartment fish toxicokinetic model can account for the effect of the exposure pathway on bioaccumulation, which the one-compartment model cannot. This insight is important for applying a weight-of-evidence approach to bioaccumulation assessment where information from aqueous and dietary test endpoints can be integrated to improve the evaluation of a chemical's bioaccumulation potential. Environ Toxicol Chem 2019;39:171-188. © 2019 SETAC.


Subject(s)
Bioaccumulation , Fishes/metabolism , Guidelines as Topic , Models, Theoretical , Organic Chemicals/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biotransformation , Diet , Hydrophobic and Hydrophilic Interactions , Organic Chemicals/metabolism , Organisation for Economic Co-Operation and Development , Toxicokinetics , Water Pollutants, Chemical/metabolism
9.
Anal Chim Acta ; 1086: 16-28, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31561791

ABSTRACT

Water solubility is one of the most important and frequently used physical-chemical properties of chemicals. It is crucial within several industrial sectors, in research and in the regulatory sector e.g. for the risk and hazard assessment of chemicals. The most recent OECD guideline (Test No. 105) for measuring solubility is from 1995 and limited to mono-constituent, stable and non-volatile substances. This OECD guideline and the described methods are not suited for several groups of difficult-to-test substances, such as highly hydrophobic chemicals, volatile chemicals, surfactants and mixtures. The aim of this paper is to review solubility measurement methods for difficult-to-test substances on a technical, analytical and scientific level. Methods to handle highly hydrophobic chemicals and volatile chemicals, and methods to rapidly saturate water with fast degrading chemicals are reviewed. A decision tree is presented outlining the preferred choice of method for each chemical group. This review also includes measurement methods for critical micelle concentrations that set the upper concentration limit for freely dissolved surfactants. Finally, concepts and strategies to measure solubility parameters for mixtures, including multi-constituent substances and chemical substances of unknown or variable composition, are discussed.

10.
Environ Toxicol Chem ; 38(6): 1302-1312, 2019 06.
Article in English | MEDLINE | ID: mdl-30919522

ABSTRACT

The Organisation for Economic Co-operation and Development (OECD) test guideline 236 (fish embryo acute toxicity test; 2013) relies on 4 endpoints to describe exposure-related effects (coagulation, lack of somite formation, tail-bud detachment from the yolk sac, and the presence of a heartbeat). Danio rerio (zebrafish) embryos were used to investigate these endpoints along with a number of additional sublethal effects (cardiac dysfunction, pericardial edema, yolk sac edema, tail curvature, hatch success, pericardial edema area, craniofacial malformation, swim bladder development, fin development, and heart rate) following 5-d exposures to 7 petroleum substances. The substances investigated included 2 crude oils, 3 gas oils, a diluted bitumen, and a petrochemical containing a mixture of branched alcohols. Biomimetic extraction-solid-phase microextraction (BE-SPME) was used to quantify freely dissolved concentrations of test substances as the exposure metric. The results indicated that the most prevalent effects observed were pericardial and yolk sac edema, tail curvature, and lack of embryo viability. A BE-SPME threshold was determined to characterize sublethal morphological alterations that preceded embryo mortality. Our results aid in the understanding of aquatic hazards of petroleum substances to developing zebrafish beyond traditional OECD test guideline 236 endpoints and show the applicability of BE-SPME as a simple analytical tool that can be used to predict sublethal embryo toxicity. Environ Toxicol Chem 2019;38:1302-1312. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Ecotoxicology , Embryo, Nonmammalian/drug effects , Environmental Exposure/analysis , Petroleum/toxicity , Zebrafish/embryology , Animals , Embryonic Development/drug effects , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity
12.
Environ Toxicol Chem ; 36(8): 2245-2252, 2017 08.
Article in English | MEDLINE | ID: mdl-28106281

ABSTRACT

The PETROTOX model was developed to perform aquatic hazard assessment of petroleum substances based on substance composition. The model relies on the hydrocarbon block method, which is widely used for conducting petroleum substance risk assessments providing further justification for evaluating model performance. Previous work described this model and provided a preliminary calibration and validation using acute toxicity data for limited petroleum substance. The objective of the present study was to re-evaluate PETROTOX using expanded data covering both acute and chronic toxicity endpoints on invertebrates, algae, and fish for a wider range of petroleum substances. The results indicated that recalibration of 2 model parameters was required, namely, the algal critical target lipid body burden and the log octanol-water partition coefficient (KOW ) limit, used to account for reduced bioavailability of hydrophobic constituents. Acute predictions from the updated model were compared with observed toxicity data and found to generally be within a factor of 3 for algae and invertebrates but overestimated fish toxicity. Chronic predictions were generally within a factor of 5 of empirical data. Furthermore, PETROTOX predicted acute and chronic hazard classifications that were consistent or conservative in 93 and 84% of comparisons, respectively. The PETROTOX model is considered suitable for the purpose of characterizing petroleum substance hazard in substance classification and risk assessments. Environ Toxicol Chem 2017;36:2245-2252. © 2017 SETAC.


Subject(s)
Hazardous Substances , Models, Theoretical , Petroleum , Water Pollutants, Chemical , Animals , Chlorophyta , Cyprinidae , Dose-Response Relationship, Drug , Hazardous Substances/analysis , Hazardous Substances/toxicity , Invertebrates , Lethal Dose 50 , No-Observed-Adverse-Effect Level , Oncorhynchus mykiss , Petroleum/analysis , Petroleum/toxicity , Predictive Value of Tests , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
Environ Toxicol Chem ; 36(4): 1020-1028, 2017 04.
Article in English | MEDLINE | ID: mdl-27653742

ABSTRACT

Characterization of the aquatic toxicity of oil is needed to support hazard assessment and inform spill response. Natural processes and mitigation strategies involving dispersant use can result in exposures to both dissolved and droplet oil that are not typically differentiated when oil exposures are characterized in toxicity tests. Thus, the impact of droplets on aquatic toxicity is largely uncharacterized. To improve the understanding of the role of droplets, acute toxicity tests with Daphnia magna and Americamysis bahia were performed with Endicott crude oil in low-energy mixing systems with and without Corexit 9500 dispersant. Exposures were also prepared by placing crude oil in silicone tubing and passively dosing test media to provide dissolved oil exposures without droplets. A framework is described for characterizing dissolved phase exposures using both mechanistic modeling and passive sampling measurements. The approach is then illustrated by application to data from the present study. Expression of toxicity in terms of toxic units calculated from modeled dissolved oil concentrations or passive sampling measurements showed similar dose responses between exposure systems and organisms, despite the gradient in droplet oil. These results indicate that droplets do not appreciably contribute to toxicity for the 2 species investigated and further support hazard evaluation of dispersed oil on the basis of dissolved exposure metrics. Environ Toxicol Chem 2017;36:1020-1028. © 2016 SETAC.


Subject(s)
Crustacea/drug effects , Models, Theoretical , Petroleum Pollution/analysis , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Lipids/chemistry , Petroleum/analysis , Solubility , Surface Properties , Toxicity Tests , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
14.
Environ Sci Technol ; 50(24): 13299-13308, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993034

ABSTRACT

In vivo dietary bioaccumulation experiments for 85 hydrophobic organic substances were conducted to derive the in vivo gastrointestinal biotransformation rates, somatic biotransformation rates, bioconcentration factors (BCF), and biomagnification factors (BMF) for improving methods for bioaccumulation assessment and to develop an in vivo biotransformation rate database for QSAR development and in vitro to in vivo biotransformation rate extrapolation. The capacity of chemicals to be biotransformed in fish was found to be highly dependent on the route of exposure. Somatic biotransformation was the dominant pathway for most chemicals absorbed via the respiratory route. Intestinal biotransformation was the dominant metabolic pathway for most chemicals absorbed via the diet. For substances not biotransformed or transformed exclusively in the body of the fish, the BCF and BMF appeared to be closely correlated. For substances subject to intestinal biotransformation, the same correlation did not apply. We conclude that intestinal biotransformation and bioavailability in water can modulate the relationship between the BCF and BMF. This study also supports a fairly simple rule of thumb that may be useful in the interpretation of dietary bioaccumulation tests; i.e., chemicals with a BMFL of <1 tend to exhibit BCFs based on either the freely dissolved (BCFWW,fd) or the total concentration (BCFWW,t) of the chemical in the water that is less than 5000.


Subject(s)
Biotransformation , Fishes/metabolism , Animals , Diet , Hydrophobic and Hydrophilic Interactions , Organic Chemicals/chemistry , Water Pollutants, Chemical/metabolism
15.
Environ Sci Technol ; 50(15): 8305-15, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27398931

ABSTRACT

Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo-larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log Kow up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo-larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM-CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Hydrocarbons, Aromatic , Larva , Lipids
16.
Chemosphere ; 150: 416-423, 2016 May.
Article in English | MEDLINE | ID: mdl-26924078

ABSTRACT

Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 µg/L to 250 µg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.


Subject(s)
Alkanes/chemistry , Models, Theoretical , Solvents/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Quantitative Structure-Activity Relationship , Solubility
17.
Environ Toxicol Chem ; 33(9): 2094-104, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24909657

ABSTRACT

The toxicity of chemically dispersed heavy fuel oil (HFO) and 3 distillate fractions to rainbow trout (Oncorhynchus mykiss) embryos was evaluated using the PETROTOX model and a biomimetic extraction technique that involved passive sampling of oil-contaminated test media with solid-phase microextraction (SPME) fibers. Test solutions for toxicity testing were generated using a combination of dispersant and high-energy mixing. The resulting water accommodated fractions (WAF) provided complex exposure regimens that included both dissolved hydrocarbons and oil droplets. The toxicity of the various fractions differed by approximately 3 orders of magnitude when expressed on the basis of WAF dilution. Using detailed compositional data, the PETROTOX model predicted the speciation of hydrocarbons between dissolved and oil droplet phases and explained observed toxicity based on computed dissolved phase toxic units (TUs). A key finding from model calculations was that dissolved hydrocarbon exposures and associated TUs were a nonlinear function of WAF dilution, because dissolved hydrocarbons were largely controlled by the dissolution of oil droplets that were transferred in WAF dilutions. Hence, oil droplets served to "buffer" dissolved concentrations in WAF dilutions at loadings greater than 1 mg/L, resulting in higher dissolved concentrations and TUs than expected based on dilution. The TUs computed at each WAF dilution explained the observed toxicity among the HFO and fractions to within a factor of 3. Dissolved material measured by SPME showed a consistent relationship with model-predicted TUs, confirming the utility of this approach for providing an integrated measure of exposure to bioavailable hydrocarbons. These 2 approaches provide complementary tools for better defining bioavailability of complex petroleum substance.


Subject(s)
Embryo, Nonmammalian/drug effects , Fuel Oils/toxicity , Oncorhynchus mykiss/embryology , Water Pollutants, Chemical/toxicity , Animals , Biomimetics/methods , Fuel Oils/analysis , Hydrocarbons/analysis , Hydrocarbons/toxicity , Models, Biological , Petroleum/analysis , Petroleum/toxicity , Solid Phase Microextraction/methods , Water/analysis , Water Pollutants, Chemical/analysis
18.
Regul Toxicol Pharmacol ; 70(2 Suppl): S13-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24852493

ABSTRACT

In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency.


Subject(s)
Air Pollutants/adverse effects , Gasoline/adverse effects , Air Pollutants/analysis , Gasoline/analysis , Humans , Risk Assessment , United States , United States Environmental Protection Agency
19.
Sci Total Environ ; 463-464: 952-8, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23872248

ABSTRACT

Reliable experimental early life stage chronic toxicity data for fish are limited and further data are needed for polyaromatic hydrocarbons to establish environmental quality objectives and compare with toxicity model predictions. Efforts are underway to develop a zebrafish embryo toxicity test guideline to reduce, refine and replace the use of vertebrates in animal testing. An adaptation of this method which includes embryo lethal and sub-lethal developmental endpoints after a 5-day exposure as well as larval survival and growth endpoints during a subsequent 25-day test period is described using phenanthrene as a model test substance. To deliver well controlled exposure concentrations, a passive dosing system consisting of silicone coated vials and silicone O-rings was employed. Acute results indicated that edema and spinal curvature were the most sensitive sub-lethal effects observed and in many cases preceded observed mortality. The 30-day LC/EC10 for larval survival and growth was 40 and 67 µg/L respectively. Concentrations shown to cause adverse effects in this study are in the range of previous studies that have investigated the chronic effects of phenanthrene on fish. Further, results indicate that predicted water quality objectives for phenanthrene derived using the target lipid model are protective of early life stage effects on zebrafish. Based on these results the predicted water quality objectives for phenanthrene derived using the target lipid model (10 µg/L) would be protective of early life stage effects on zebrafish.


Subject(s)
Phenanthrenes/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/growth & development , Animals , Dose-Response Relationship, Drug , Phenanthrenes/administration & dosage , Phenanthrenes/analysis , Toxicity Tests/methods , Water/chemistry , Water Pollutants, Chemical/administration & dosage , Water Pollutants, Chemical/analysis
20.
Int J Toxicol ; 31(2): 175-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22422433

ABSTRACT

Female F344 rats were fed diets containing 0.02%, 0.2%, or 2.0% white mineral oil for 90 days. There were no gross or microscopic differences in target organs at the 0.02% level. In the higher-dose groups, relative liver and mesenteric lymph node (MLN) weights were increased, and MLN inflammation was observed. At the 2% level, there was very limited evidence of microgranuloma formation in the liver but at a lower incidence and at lesser severity than has been reported in studies of C22-C25 oils. Analysis of liver extracts from treated rats revealed that C15-C20 constituents were underrepresented by comparison to their corresponding concentrations in the test oil. These results provide evidence that although hydrocarbons with carbon numbers < C20 are absorbed, they are not preferentially retained and do not contribute to inflammatory processes in liver.


Subject(s)
Mineral Oil/toxicity , Animals , Female , Granuloma/chemically induced , Hydrocarbons/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mineral Oil/pharmacokinetics , Molecular Weight , Organ Size/drug effects , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...