Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 129(4): 1641-1653, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30721156

ABSTRACT

Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.


Subject(s)
Carcinoma, Neuroendocrine/enzymology , Oncogene Proteins/metabolism , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Cell Line, Tumor , Enzyme Activators/pharmacology , G1 Phase/drug effects , G1 Phase/genetics , Humans , Oncogene Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/genetics , rab GTP-Binding Proteins/genetics
2.
Sci Rep ; 7(1): 8157, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811661

ABSTRACT

MYST histone acetyltransferases have crucial functions in transcription, replication and DNA repair and are hence implicated in development and cancer. Here we characterise Myst2/Kat7/Hbo1 protein interactions in mouse embryonic stem cells by affinity purification coupled to mass spectrometry. This study confirms that in embryonic stem cells Myst2 is part of H3 and H4 histone acetylation complexes similar to those described in somatic cells. We identify a novel Myst2-associated protein, the tumour suppressor protein Niam (Nuclear Interactor of ARF and Mdm2). Human NIAM is involved in chromosome segregation, p53 regulation and cell proliferation in somatic cells, but its role in embryonic stem cells is unknown. We describe the first Niam embryonic stem cell interactome, which includes proteins with roles in DNA replication and repair, transcription, splicing and ribosome biogenesis. Many of Myst2 and Niam binding partners are required for correct embryonic development, implicating Myst2 and Niam in the cooperative regulation of this process and suggesting a novel role for Niam in embryonic biology. The data provides a useful resource for exploring Myst2 and Niam essential cellular functions and should contribute to deeper understanding of organism early development and survival as well as cancer. Data are available via ProteomeXchange with identifier PXD005987.


Subject(s)
DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , Histone Acetyltransferases/metabolism , Proteome , Proteomics , Acetylation , Alleles , Animals , Carrier Proteins/metabolism , Cell Proliferation , Chromatin Assembly and Disassembly , Computational Biology/methods , Female , Gene Regulatory Networks , Male , Mass Spectrometry , Mice , Mice, Knockout , Pluripotent Stem Cells/metabolism , Protein Binding , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...