Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 592(7853): 205-208, 2021 04.
Article in English | MEDLINE | ID: mdl-33828321

ABSTRACT

The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades1,2. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiation conditions3. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour4 and carbon monoxide5 in their atmospheres; this has been studied in terms of scaled solar composition6 under the usual assumption of chemical equilibrium. Both molecules as well as hydrogen cyanide were found in the atmosphere of HD 209458b5,7,8, a well studied hot Jupiter (with equilibrium temperature around 1,500 kelvin), whereas ammonia was tentatively detected there9 and subsequently refuted10. Here we report observations of HD 209458b that indicate the presence of water (H2O), carbon monoxide (CO), hydrogen cyanide (HCN), methane (CH4), ammonia (NH3) and acetylene (C2H2), with statistical significance of 5.3 to 9.9 standard deviations per molecule. Atmospheric models in radiative and chemical equilibrium that account for the detected species indicate a carbon-rich chemistry with a carbon-to-oxygen ratio close to or greater than 1, higher than the solar value (0.55). According to existing models relating the atmospheric chemistry to planet formation and migration scenarios3,11,12, this would suggest that HD 209458b formed far from its present location and subsequently migrated inwards11,13. Other hot Jupiters may also show a richer chemistry than has been previously found, which would bring into question the frequently made assumption that they have solar-like and oxygen-rich compositions.

2.
Sci Rep ; 10(1): 15224, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32938969

ABSTRACT

The aerosol properties of Mount Etna's passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO campaigns (summer 2016-2017), using a synergistic combination of observations and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations. Using portable photometers, the first mapping of small-scale (within [Formula: see text] from the degassing craters) spatial variability of the average size and coarse-to-fine burden proportion of volcanic aerosols is obtained. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and/or coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Statistically significant progressively smaller particles and decreasing coarse-to-fine particles burden proportion are found along plume dispersion. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effect of the plume. For a plume with an ultraviolet aerosol optical depth of 0.12-0.14, daily average radiative forcings of [Formula: see text] and [Formula: see text], at TOA and surface, are found at a fixed location [Formula: see text] downwind the degassing craters. This is the first available estimation in the literature of the local radiative impact of a passive degassing volcanic plume.

3.
Eur J Pharmacol ; 588(1): 47-51, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18495109

ABSTRACT

The inhibition of cell proliferation by methyl (2Z,4E)-2-methylsulfanyl-5-(1-naphthyl)-4-nitro-2,4-pentadienoate (1-Naph-NMCB) and (1E,3E)-1,4-bis(2-naphthyl)-2,3-dinitro-1,3-butadiene (2-Naph-DNB) has been studied in vitro against four cell lines selected for their resistance to doxorubicin, cisplatin, taxol and 5-fluorouracil. In previous experiments both compounds showed good in vitro antiproliferative, cytotoxic and pro-apoptotic activities against cell lines of different histologic origin. The results of the experiments presented here suggest that 1-Naph-NMCB is able to overcome all of the different mechanisms of resistance showed by the resistant cell lines used for our experiments. On the contrary, when we used the taxol-resistant A549-T12 cell line, characterized by a mechanism of resistance due to a mutation of the target site of taxol on microtubules, it displayed a partial but significant cross-resistance to 2-Naph-DNB. Although the actual mechanism of this cross-resistance has not yet been definitively elucidated, our results from immunostaining of microtubules suggest that it may be linked to the presence of a shared target site for taxol and 2-Naph-DNB on microtubules.


Subject(s)
Antineoplastic Agents/pharmacology , Butadienes/pharmacology , Fatty Acids, Unsaturated/pharmacology , Naphthalenes/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Fluorescent Antibody Technique , Humans , Microtubules/drug effects , Microtubules/metabolism , Tetrazolium Salts , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...