Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R952-9, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26864811

ABSTRACT

Roux-en-Y gastric bypass surgery (RYGB) decreases caloric intake in both human patients and rodent models. In long-term intake tests, rats decrease their preference for fat and/or sugar after RYGB, and patients may have similar changes in food selection. Here we evaluated the impact of RYGB on intake during a "cafeteria"-style presentation of foods to assess if rats would lower the percentage of calories taken from fat and/or sugar after RYGB in a more complex dietary context. Male Sprague-Dawley rats that underwent either RYGB or sham surgery (Sham) were presurgically and postsurgically given 8-days free access to four semisolid foods representative of different fat and sugar levels along with standard chow and water. Compared with Sham rats, RYGB rats took proportionally fewer calories from fat and more calories from carbohydrates; the latter was not attributable to an increase in sugar intake. The proportion of calories taken from protein after RYGB also increased slightly. Importantly, these postsurgical macronutrient caloric intake changes in the RYGB rats were progressive, making it unlikely that the surgery had an immediate impact on the hedonic evaluation of the foods and strongly suggesting that learning is influencing the food choices. Indeed, despite these dietary shifts, RYGB, as well as Sham, rats continued to select the majority of their calories from the high-fat/high-sugar option. Apparently after RYGB, rats can progressively regulate their intake and selection of complex foods to achieve a seemingly healthier macronutrient dietary composition.


Subject(s)
Animal Feed/analysis , Dietary Fats , Energy Intake , Animals , Appetitive Behavior , Diet , Dietary Carbohydrates , Dietary Proteins , Gastric Bypass , Male , Rats
2.
Physiol Behav ; 142: 179-88, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25660341

ABSTRACT

After Roux-en-Y gastric bypass (RYGB) surgery, patients report consuming fewer fatty and dessert-like foods, and rats display blunted sugar and fat preferences. Here we used a progressive ratio (PR) task in our rat model to explicitly test whether RYGB decreases the willingness of rats to work for very small amounts of preferred sugar- and/or fat-containing fluids. In each of two studies, two groups of rats - one maintained on a high-fat diet (HFD) and standard chow (CHOW) and one given CHOW alone - were trained while water-deprived to work for water or either Ensure or 1.0M sucrose on increasingly difficult operant schedules. When tested before surgery while nondeprived, HFD rats had lower PR breakpoints (number of operant responses in the last reinforced ratio) for sucrose, but not for Ensure, than CHOW rats. After surgery, at no time did rats given RYGB show lower breakpoints than SHAM rats for Ensure, sucrose, or when 5% Intralipid served postoperatively as the reinforcer. Nevertheless, RYGB rats showed blunted preferences for these caloric fluids versus water in 2-bottle preference tests. Importantly, although the Intralipid and sucrose preferences of RYGB rats decreased further over time, subsequent breakpoints for them were not significantly impacted. Collectively, these data suggest that the observed lower preferences for normally palatable fluids after RYGB in rats may reflect a learned adjustment to altered postingestive feedback rather than a dampening of the reinforcing taste characteristics of such stimuli as measured by the PR task in which postingestive stimulation is negligible.


Subject(s)
Appetitive Behavior , Dietary Fats , Dietary Sucrose , Energy Intake , Food Preferences , Gastric Bypass/psychology , Animal Feed , Animals , Appetitive Behavior/physiology , Body Weight/physiology , Conditioning, Operant/physiology , Diet, High-Fat , Dietary Fats/administration & dosage , Dietary Sucrose/administration & dosage , Drinking Water/administration & dosage , Emulsions/administration & dosage , Energy Intake/physiology , Food Preferences/physiology , Food, Formulated , Male , Models, Animal , Phospholipids/administration & dosage , Postoperative Period , Rats, Sprague-Dawley , Reinforcement Schedule , Reward , Soybean Oil/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...