Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37222578

ABSTRACT

In this paper, we present the design and performance of the upgraded University of Florida torsion pendulum facility for testing inertial sensor technology related to space-based gravitational wave observatories and geodesy missions. In particular, much work has been conducted on inertial sensor technology related to the Laser Interferometer Space Antenna (LISA) space gravitational wave observatory mission. A significant upgrade to the facility was the incorporation of a newly designed and fabricated LISA-like gravitational reference sensor (GRS) based on the LISA Pathfinder GRS. Its LISA-like geometry has allowed us to make noise measurements that are more representative of those in LISA and has allowed for the characterization of the mechanisms of noise induced on a LISA GRS and their underlying physics. Noise performance results and experiments exploring the effect of temperature gradients across the sensor will also be discussed. The LISA-like sensor also includes unique UV light injection geometries for UV LED based charge management. Pulsed and DC charge management experiments have been conducted using the University of Florida charge management group's technology readiness level 4 charge management device. These experiments have allowed for the testing of charge management system hardware and techniques as well as characterizations of the dynamics of GRS test mass charging. The work presented here demonstrates the upgraded torsion pendulum's ability to act as an effective testbed for GRS technology.

2.
Rev Sci Instrum ; 93(11): 114503, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461465

ABSTRACT

There is increasing interest in deep UV Light-Emitting Diodes (LEDs) for applications in water purification, virus inactivation, sterilization, bioagent detection, and UV curing, as well as charge management control in the Laser Interferometer Space Antenna (LISA), which will be the first gravitational wave detector in space. To fully understand the current state of commercial UV LEDs and assess their performance for use on LISA, large numbers of UV LEDs need to be tested across a range of temperatures while operating in air or in a vacuum. We describe a new hardware system designed to accommodate a high volume of UV LED performance tests and present the performance testing results from over 200 UV LEDs with wavelengths in the 250 nm range.


Subject(s)
Sterilization , Virus Inactivation , Temperature , Vacuum
3.
Article in English | MEDLINE | ID: mdl-25871163

ABSTRACT

We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.


Subject(s)
Models, Neurological , Nerve Net/cytology , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...