Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 62(6): 1025-1037, 2018 12.
Article in English | MEDLINE | ID: mdl-30171328

ABSTRACT

Interdisciplinary research is increasingly called upon to find solutions to complex sustainability problems, yet co-creating usable knowledge can be challenging. This article offers broad lessons for conducting interdisciplinary science from the South Florida Water, Sustainability, and Climate Project (SFWSC), a 5-year project funded by the U.S. National Science Foundation (NSF). The goal was to develop a holistic decision-making framework to improve understanding of the complex natural-social system of South Florida water allocation and its threats from climate change, including sea level rise, using a water resources optimization model as an integration mechanism. The SFWSC project faced several challenges, including uncertainty with tasks, high task interdependence, and ensuring communication among geographically dispersed members. Our hypothesis was that adaptive techniques would help overcome these challenges and maintain scientific rigor as research evolved. By systematically evaluating the interdisciplinary management approach throughout the project, we learned that integration can be supported by a three-pronged approach: (1) Build a well-defined team and leadership structure for collaboration across geographic distance and disciplines, ensuring adequate coordination funding, encouraging cross-pollination, and allowing team structure to adapt; (2) intentionally design a process and structure for facilitating collaboration, creating mechanisms for routine analysis, and incorporating collaboration tools that foster communication; and (3) support integration within the scientific framework, by using a shared research output, and encouraging team members to adapt when facing unanticipated constraints. These lessons contribute to the international body of knowledge on interdisciplinary research and can assist teams attempting to develop sustainable solutions in complex natural-social systems.


Subject(s)
Conservation of Water Resources , Interdisciplinary Research , Climate Change , Decision Making , Florida , Humans , Interdisciplinary Communication , Interdisciplinary Research/organization & administration , Leadership , Water/chemistry
2.
Sci Total Environ ; 628-629: 1531-1541, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045571

ABSTRACT

South Florida's water infrastructure and ecosystems are under pressure from socio-economic growth. Understanding the region's water resources management tradeoffs is essential for developing effective adaptation strategies to cope with emerging challenges such as climate change and sea level rise, which are expected to affect many other regions in the future. We describe a network-based hydro-economic optimization model of the system to investigate the tradeoffs, incorporating the economic value of water in urban and agricultural sectors and economic damages due to urban flooding while also accounting for water supply to sustain fragile ecosystems such as the Everglades and coastal estuaries. Results illustrate that maintaining high reliability of urban water supply under scenarios of reduced water availability (i.e., drier climate conditions) may trigger economic losses to the Everglades Agricultural Area, which will likely become more vulnerable as competition over scarce water resources increases. More pronounced economic losses are expected in urban and agricultural areas when flows to the Everglades are prioritized. Flow targets for coastal estuaries are occasionally exceeded under optimal flow allocations to various demand nodes, indicating that additional storage may be needed to maintain the environmental integrity of the estuarine ecosystems. Wetter climate conditions, on the other hand, generally lead to increased flows throughout the system with positive effects on meeting water demands, although flood mitigation efforts will necessitate additional releases to the estuaries. Strengths and limitations of the hydro-economic model are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...