Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980285

ABSTRACT

Coiled coils, commonly found in native proteins, are helical motifs important for mediating intermolecular interactions. While coiled coils are attractive for use in new therapies and biomaterials, the lack of enzymatic stability of naturally occurring l-peptides may limit their implementation in biological environments. d-peptides are of interest for biomedical applications as they are resistant to enzymatic degradation and recent reports indicate that stereochemistry-driven interactions, achieved by blending d- and l-peptides, yield access to a greater range of binding affinities and a resistance to enzymatic degradation compared to l-peptides alone. To our knowledge, this effect has not been studied in coiled coils. Here, we investigate the effects of blending heterochiral E/K coiled coils, which are a set of coiled coils widely used in biomaterials. We found that we needed to redesign the coiled coils from a repeating pattern of seven amino acids (heptad) to a repeating pattern of 11 amino acids (hendecad) to make them more amenable to heterochiral complex formation. The redesigned hendecad coiled coils form both homochiral and heterochiral complexes, where the heterochiral complexes have stronger heats of binding between the constituent peptides and are more enzymatically stable than the analogous homochiral complexes. Our results highlight the ability to design peptides to make them amenable to heterochiral complexation, so as to achieve desirable properties like increased enzymatic stability and stronger binding. Looking forward, understanding how to engineer peptides to utilize stereochemistry as a materials design tool will be important to the development of next-generation therapeutics and biomaterials.

2.
ACS Polym Au ; 4(1): 45-55, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38371733

ABSTRACT

Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics for treating infections caused by drug-resistant bacteria; yet, many peptides are limited by toxicity to eukaryotic cells and instability in biological environments. Conjugation to linear polymers that reduce cytotoxicity and improve stability, however, often decreases antimicrobial activity. In this work, we combine the biocompatibility advantages of poly(ethylene glycol) (PEG) with the efficacy merits of nonlinear polymer architectures that accommodate multiple AMPs per molecule. By conjugating a chemokine-derived AMP, stapled Ac-P9, to linear and star-shaped PEG with various arm numbers and lengths, we investigated the role of molecular architecture in solution properties (i.e., ζ-potential, size, and morphology) and performance (i.e., antimicrobial activity, hemolysis, and protease resistance). Linear, 4-arm, and 8-arm conjugates with 2-2.5 kDa PEG arms were found to form nanoscale structures in solution with lower ζ-potentials relative to the unconjugated AMP, suggesting that the polymer partially shields the cationic AMP. Reducing the length of the PEG arms of the 8-arm conjugate to 1.25 kDa appeared to better reveal the peptide, seen by the increased ζ-potential, and promote assembly into particles with a larger size and defined spherical morphology. The antimicrobial effects exerted by the short 8-arm conjugate rivaled that of the unconjugated peptide, and the AMP constituents of the short 8-arm conjugate were protected from proteolytic degradation. All other conjugates examined also imparted a degree of protease resistance, but exhibited some reduced level of antimicrobial activity as compared to the AMP alone. None of the conjugates caused significant cytotoxic effects, which bodes well for their future potential to treat infections. While enhancing proteolytic stability often comes with the cost of lower antimicrobial activity, we have found that presenting AMPs at high density on a neutral nonlinear polymer strikes a favorable balance, exhibiting both enhanced stability and high antimicrobial activity.

3.
ACS Macro Lett ; 12(10): 1416-1422, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37793066

ABSTRACT

With synthetic ease and tunable degradation lifetimes, poly(ß-amino ester)s (PBAEs) have found use in increasingly diverse applications, from gene therapy to thermosets. Protonatable amines in each repeating unit impart pH-dependent solution behavior and lifetimes, with acidic conditions favoring solubility, yet slowing hydrolysis. Due in part to these interconnected phenomena governing pH-dependent PBAE degradation, predictive degradation models, which would enable user-defined lifetimes, remain elusive. To separate the effects of charge state and solution pH on PBAE degradation, we synthesized poly(ß-quaternary ammonium ester)s (PBQAEs), which differ from their parent PBAEs only by an additional methyl group, generating polymers with pH-independent cationic charge. Like PBAEs, PBQAE hydrolysis accelerates with increasing pH, although at a given pH, PBAE degradation outpaces PBQAE degradation. This difference is more pronounced in basic solutions, suggesting that deprotonated PBAE amines accelerate hydrolysis, providing an additional tuning parameter to PBAE lifetime and informing the degradation of PBAEs and other pH-responsive polymers.

4.
Polym Chem ; 14(4): 421-431, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-37842180

ABSTRACT

As hydrolytically-labile, traditionally-cationic polymers, poly(ß-amino ester)s (PBAEs) adeptly complex anionic compounds such as nucleic acids, and release their cargo as the polymer degrades. To engineer fully-degradable polyelectrolyte complexes and delivery vehicles for cationic therapeutics, we sought to invert PBAE net charge to generate net anionic PBAEs. Since PBAEs can carry up to a net charge of +1 per tertiary amine, we synthesized a series of alkyne-functionalized PBAEs that allowed installation of 2 anionic thiol-containing molecules per tertiary amine via a radical thiol-yne reaction. Finding dialysis in aqueous solution to lead to PBAE degradation, we developed a preparative size exclusion chromatography method to remove unreacted thiol from the net anionic PBAEs without triggering hydrolysis. The net anionic PBAEs display non-monotonic solution behavior as a function of pH, being more soluble at pH 4 and 10 than in intermediate pH ranges. Like cationic PBAEs, these net anionic PBAEs degrade in aqueous environments with hydrophobic content-dependent hydrolysis, as determined by 1H NMR spectroscopy. Further, these net anionic PBAEs form complexes with the cationic peptide (GR)10, which disintegrate over time as the polymer hydrolyzes. Together, these studies outline a synthesis and purification route to make previously inaccessible net anionic PBAEs with tunable solution and degradation behavior, allowing for user-determined complexation and release rates and providing opportunities for degradable polyelectrolyte complexes and cationic therapeutic delivery.

5.
J Am Chem Soc ; 145(33): 18468-18476, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37566784

ABSTRACT

Stereocomplexation, or specific interactions among complementary stereoregular macromolecules, is burgeoning as an increasingly impactful design tool, exerting exquisite control of material structure and properties. Since stereocomplexation of polymers produces remarkable transformations in mechanics, morphology, and degradation, we sought to leverage stereocomplexation to tune these properties in peptide-based biomaterials. We found that blending the pentapeptides l- and d-KYFIL triggers dual mechanical and morphological transformations from stiff fibrous hydrogels into less stiff networks of plates, starkly contrasting prior reports that blending l- and d-peptides produces stiffer fibrous hydrogels than the individual constituents. The morphological transformation of KYFIL in phosphate-buffered saline from fibers that entangle into hydrogels to plates that cannot entangle explains the accompanying mechanical transformation. Moreover, the blends shield l-KYFIL from proteolytic degradation, producing materials with comparable proteolytic stability to d-KYFIL but with distinct 2D plate morphologies that in biomaterials may promote unique therapeutic release profiles and cell behavior. To confirm that these morphological, mechanical, and stability changes arise from differences in molecular packing as in polymer stereocomplexation, we acquired X-ray diffraction patterns, which showed l- and d-KYFIL to be amorphous and their blends to be crystalline. Stereocomplexation is particularly apparent in pure water, where l- and d-KYFIL are soluble random coils, and their blends form ß-sheets and gel within minutes. Our results highlight the role of molecular details, such as peptide sequence, in determining the material properties resulting from stereocomplexation. Looking forward, the ability of stereocomplexation to orchestrate supramolecular assembly and tune application-critical properties champions stereochemistry as a compelling design consideration.


Subject(s)
Biocompatible Materials , Hydrogels , Hydrogels/chemistry , Biocompatible Materials/chemistry , Peptides/chemistry , Polymers/chemistry , Macromolecular Substances/chemistry
6.
ACS Infect Dis ; 9(1): 122-139, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36475632

ABSTRACT

CXCL10 is a pro-inflammatory chemokine produced by the host in response to microbial infection. In addition to canonical, receptor-dependent actions affecting immune-cell migration and activation, CXCL10 has also been found to directly kill a broad range of pathogenic bacteria. Prior investigations suggest that the bactericidal effects of CXCL10 occur through two distinct pathways that compromise the cell envelope. These observations raise the intriguing notion that CXCL10 features a separable pair of antimicrobial domains. Herein, we affirm this possibility through peptide-based mapping and structure/function analyses, which demonstrate that discrete peptides derived from the N- and C-terminal regions of CXCL10 mediate bacterial killing. The N-terminal derivative, peptide P1, exhibited marked antimicrobial activity against Bacillus anthracis vegetative bacilli and spores, as well as antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Acinetobacter baumannii, Enterococcus faecium, and Staphylococcus aureus, among others. At bactericidal concentrations, peptide P1 had a minimal degree of chemotactic activity, but did not cause red blood cell hemolysis or cytotoxic effects against primary human cells. The C-terminal derivative, peptide P9, exhibited antimicrobial effects, but only against Gram-negative bacteria in low-salt medium─conditions under which the peptide can adopt an α-helical conformation. The introduction of a hydrocarbon staple induced and stabilized α-helicity; accordingly, stapled peptide P9 displayed significantly improved bactericidal effects against both Gram-positive and Gram-negative bacteria in media containing physiologic levels of salt. Together, our findings identify and characterize the antimicrobial regions of CXCL10 and functionalize these novel determinants as discrete peptides with potential therapeutic utility against difficult-to-treat pathogens.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Chemokine CXCL10/metabolism , Chemokine CXCL10/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology
7.
Acta Biomater ; 140: 43-75, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34710626

ABSTRACT

A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and ß-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.


Subject(s)
Biocompatible Materials , Tissue Engineering , Biocompatible Materials/pharmacology , Extracellular Matrix , Hydrogels/chemistry , Hydrogels/pharmacology , Peptides/chemistry , Peptides/pharmacology , Tissue Engineering/methods
8.
Biomater Sci ; 9(15): 5069-5091, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34096936

ABSTRACT

As antimicrobial resistance becomes an increasing threat, bringing significant economic and health burdens, innovative antimicrobial treatments are urgently needed. While antimicrobial peptides (AMPs) are promising therapeutics, exhibiting high activity against resistant bacterial strains, limited stability and toxicity to mammalian cells has hindered clinical development. Attaching AMPs to polymers provides opportunities to present AMPs in a way that maximizes bacterial killing while enhancing compatibility with mammalian cells, stability, and solubility. Conjugation of an AMP to a linear hydrophilic polymer yields the desired improvements in stability, mammalian cell compatibility, and solubility, yet often markedly reduces bactericidal effects. Non-linear polymer architectures and supramolecular assemblies that accommodate multiple AMPs per polymer chain afford AMP-polymer conjugates that strike a superior balance of antimicrobial activity, mammalian cell compatibility, stability, and solubility. Therefore, we review the design criteria, building blocks, and synthetic strategies for engineering AMP-polymer conjugates, emphasizing the connection between molecular architecture and antimicrobial performance to inspire and enable further innovation to advance this emerging class of biomaterials.


Subject(s)
Anti-Infective Agents , Polymers , Protein Engineering , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins
9.
Nano Lett ; 21(12): 4990-4998, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34115938

ABSTRACT

Platelet-like and cylindrical nanostructures from sugar-based polymers are designed to mimic the aspect ratio of bacteria and achieve uroepithelial cell binding and internalization, thereby improving their potential for local treatment of recurrent urinary tract infections. Polymer nanostructures, derived from amphiphilic block polymers composed of zwitterionic poly(d-glucose carbonate) and semicrystalline poly(l-lactide) segments, were constructed with morphologies that could be tuned to enhance uroepithelial cell binding. These nanoparticles exhibited negligible cytotoxicity, immunotoxicity, and cytokine adsorption, while also offering substantial silver cation loading capacity, extended release, and in vitro antimicrobial activity (as effective as free silver cations) against uropathogenic Escherichia coli. In comparison to spherical analogues, cylindrical and platelet-like nanostructures engaged in significantly higher association with uroepithelial cells, as measured by flow cytometry; despite their larger size, platelet-like nanostructures maintained the capacity for cell internalization. This work establishes initial evidence of degradable platelet-shaped nanostructures as versatile therapeutic carriers for treatment of epithelial infections.


Subject(s)
Nanoparticles , Polymers , Anti-Bacterial Agents/pharmacology , Silver , Sugars
10.
Biomater Sci ; 9(12): 4374-4387, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34076655

ABSTRACT

The ability to spatiotemporally control the presentation of relevant biomolecules in synthetic culture systems has gained significant attention as researchers strive to recapitulate the endogenous extracellular matrix (ECM) in vitro. With the biochemical composition of the ECM constantly in flux, the development of platforms that allow for user-defined control of bioactivity is desired. Here, we reversibly conjugate bioactive molecules to hydrogel-based substrates through supramolecular coiled coil complexes that form between complementary peptides. Our system employs a thiolated peptide for tethering to hydrogel surfaces (T-peptide) through a spatially-controlled photomediated click reaction. The complementary association peptide (A-peptide), containing the bioactive domain, forms a heterodimeric coiled coil complex with the T-peptide. Addition of a disruptor peptide (D-peptide) engineered specifically to target the A-peptide outcompetes the T-peptide for binding, and removes the A-peptide and the attached bioactive motif from the scaffold. We use this platform to demonstrate spatiotemporal control of biomolecule presentation within hydrogel systems in a repeatable process that can be extended to adhesive motifs for cell culture. NIH 3T3 fibroblasts seeded on hyaluronic acid hydrogels and polyethylene glycol-based fibrous substrates supramolecularly functionalized with an RGD motif demonstrated significant cell spreading over their nonfunctionalized counterparts. Upon displacement of the RGD motif, fibroblasts occupied less area and clustured on the substrates. Taken together, this platform enables facile user-defined incorporation and removal of biomolecules in a repeatable process for controlled presentation of bioactivity in engineered culture systems.


Subject(s)
Extracellular Matrix , Hydrogels , Hyaluronic Acid , Peptides , Polyethylene Glycols
11.
Nature ; 593(7857): 61-66, 2021 05.
Article in English | MEDLINE | ID: mdl-33953410

ABSTRACT

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Subject(s)
Electric Power Supplies , Electrochemistry , Peptides/chemistry , Animals , Cattle , Cell Line , Cell Survival , Cyclic N-Oxides/chemistry , Mice , Osteoblasts/cytology , Oxidation-Reduction , Peptides/chemical synthesis , Sustainable Development , Viologens/chemistry
12.
ACS Nano ; 13(5): 5147-5162, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30990651

ABSTRACT

In this work, we investigated the fundamental molecular parameters that guide the supramolecular assembly of glucose-based amphiphilic coil-brush block polymers in aqueous solution and elucidated architecture-morphology relationships through experimental and simulation tools. Well-defined coil-brush polymers were synthesized through ring-opening polymerizations (ROP) of glucose carbonates to afford norbornenyl-functionalized poly(glucose carbonate) (NB-PGC) macromonomers, followed by sequential ring-opening metathesis polymerizations (ROMP) of norbornene N-hydroxysuccinimidyl (NHS) esters and the NB-PGC macromonomers. Variation of the macromonomer length and grafting through ROMP conditions allowed for a series of coil-brush polymers to be synthesized with differences in the brush and coil dimensions, independently, where the side chain graft length and brush backbone were used to tune the brush, and the coil block length was used to vary the coil. Hydrolysis of the NHS moieties gave the amphiphilic coil-brush polymers, where the hydrophilic-hydrophobic ratios were dependent on the brush and coil relative dimensions. Experimental assembly in solution was studied and found to yield a variety of structurally dependent nanostructures. Simulations were conducted on the solution assembly of coil-brush polymers, where the polymers were represented by a coarse-grained model and the solvent was represented implicitly. There is qualitative agreement in the phase diagrams obtained from simulations and experiments, in terms of the morphologies of the assembled nanoscopic structures achieved as a function of coil-brush design parameters ( e.g., brush and coil lengths, composition). The simulations further showed the chain conformations adopted by the coil-brush polymers and the packing within these assembled nanoscopic structures. This work enables the predictive design of nanostructures from this glucose-based coil-brush polymer platform while providing a fundamental understanding of interactions within solution assembly of complex polymer building blocks.

13.
Langmuir ; 35(5): 1503-1512, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30346776

ABSTRACT

A zwitterionic polyphosphoester (zPPE), specifically l-cysteine-functionalized poly(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane (zPBYP), has been developed as a poly(ethylene glycol) (PEG) alternative coating material for gold nanoparticles (AuNPs), the most extensively investigated metal nanoparticulate platform toward molecular imaging, photothermal therapy, and drug delivery applications. Thiol-yne conjugation of cysteine transformed an initial azido-terminated and alkynyl-functionalized PBYP homopolymer into zPBYP, offering hydrolytic degradability, biocompatibility, and versatile reactive moieties for installation of a range of functional groups. Despite minor degradation during purification, zPPEs were able to stabilize AuNPs presumably through multivalent interactions between combinations of the side chain zwitterions (thioether and phosphoester groups of the zPPEs with the AuNPs). 31P NMR studies in D2O revealed ca. 20% hydrolysis of the phosphoester moieties of the repeat units had occurred during the workup and purification by aqueous dialysis at pH 3 over ca. 1 d, as observed by the 31P signal of the phosphotriesters resonating at ca. -0.5 to -1.7 shifting downfield to ca. 1.1 to -0.4 ppm, attributed to transformation to phosphates. Further hydrolysis of side chain and backbone units proceeded to an extent of ca. 75% over the next 2 d in nanopure water (pH 5-6). The NMR degradation results were consistent with the broadening and red-shift of the surface plasmon resonance (SPR) observed by UV-vis spectroscopy of the zPPE-coated AuNPs in water over time. All AuNP formulations in this study, including those with citrate, PEG, and zPPE coatings, exhibited negligible immunotoxicity, as determined by cytokine overexpression in the presence of the nanostructures relative to those in cell culture medium. Notably, the zPPE-coated AuNPs displayed superior antifouling properties, as assessed by the extent of cytokine adsorption relative to both the PEGylated and citrate-coated AuNPs. Taken together, the physicochemical and biological evaluations of zPPE-coated AuNPs in conjunction with PEGylated and citrate-coated analogues indicate the promise of zPPEs as favorable alternatives to PEG coatings, with negligible immunotoxicity, good antifouling performance, and versatile reactive groups that enable the preparation of highly tailored nanomaterials for diverse applications.


Subject(s)
Biodegradable Plastics/chemistry , Coated Materials, Biocompatible/chemistry , Metal Nanoparticles/chemistry , Adsorption , Animals , Biodegradable Plastics/chemical synthesis , Biodegradable Plastics/metabolism , Biofouling/prevention & control , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/metabolism , Cytokines/chemistry , Cytokines/metabolism , Gold/chemistry , Mice , Protein Binding , RAW 264.7 Cells
14.
Org Biomol Chem ; 15(36): 7630-7642, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28869254

ABSTRACT

Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly(l-glutamate) and racemic poly(d,l-glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly(l-lysine) and poly(l-glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic.

15.
Adv Mater ; 29(38)2017 Oct.
Article in English | MEDLINE | ID: mdl-28833762

ABSTRACT

Polymer zwitterions are generally regarded as hydrophilic and repellant or "slippery" materials. Here, a case is described in which the polymer zwitterion structure is tailored to decrease water solubility, stabilize emulsion droplets, and promote interdroplet adhesion. Harnessing the upper critical solution temperature of sulfonium- and ammonium-based polymer zwitterions in water, adhesive droplets are prepared by adding organic solvent to an aqueous polymer solution at elevated temperature, followed by agitation to induce emulsification. Droplet aggregation is observed as the mixture cools. Variation of salt concentration, temperature, polymer concentration, and polymer structure modulates these interdroplet interactions, resulting in distinct changes in emulsion stability and fluidity. Under attractive conditions, emulsions encapsulating 50-75% oil undergo gelation. By contrast, emulsions prepared under conditions where droplets are nonadhesive remain fluid and, for oil fractions exceeding 0.6, coalescence is observed. The uniquely reactive nature of the selected zwitterions allows their in situ modification and affords a route to chemically trigger deaggregation and droplet dispersion. Finally, experiments performed in a microfluidic device, in which droplets are formed under conditions that either promote or suppress adhesion, confirm the salt-responsive character of these emulsions and the persistence of adhesive interdroplet interactions under flow.

16.
Org Biomol Chem ; 15(24): 5145-5154, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28574067

ABSTRACT

A polypeptide-based hydrogel system, when prepared from a diblock polymer with a ternary copolypeptide as one block, exhibited thermo-, mechano- and enzyme-responsive properties, which enabled the encapsulation of naproxen (Npx) during the sol-gel transition and its release in the gel state. Statistical terpolymerizations of l-alanine (Ala), glycine (Gly) and l-isoleucine (Ile) NCAs at a 1 : 1 : 1 feed ratio initiated by monomethoxy monoamino-terminated poly(ethylene glycol) afforded a series of methoxy poly(ethylene glycol)-block-poly(l-alanine-co-glycine-co-l-isoleucine) (mPEG-b-P(A-G-I)) block polymers. ß-Sheets were the dominant secondary structures within the polypeptide segments, which facilitated a heat-induced sol-to-gel transition, resulting from the supramolecular assembly of ß-sheets into nanofibrils. Deconstruction of the three-dimensional networks by mechanical force (sonication) triggered the reverse gel-to-sol transition. Certain enzymes could accelerate the breakdown of the hydrogel, as determined by in vitro gel weight loss profiles. The hydrogels were able to encapsulate and release Npx over 6 days, demonstrating the potential application of these polypeptide hydrogels as an injectable local delivery system for small molecule drugs.


Subject(s)
Anhydrides/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Peptides/chemistry , Hydrogels/chemical synthesis , Molecular Structure , Peptides/chemical synthesis , Polymerization
17.
ACS Appl Mater Interfaces ; 8(49): 33386-33393, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960419

ABSTRACT

Linear and hyperbranched poly(ethylene glycol)-cross-linked amphiphilic fluoropolymer networks comprised of different liquid crystalline comonomers were developed and evaluated as functional coatings in extreme weather-challenging conditions. Through variation of the liquid-crystalline comonomer and hydrophilic:hydrophobic component ratios, several series of coatings were synthesized and underwent a variety of analyses including differential scanning calorimetry, water contact angle measurements and solution stability studies in aqueous media. These materials maintained an unprecedented reduction in the free water melting transition (Tm) temperature across the hyperbranched and linear versions. The coatings synthesized from hyperbranched fluoropolymers preserved the liquid crystalline character of the mesogenic components, as seen by polarized optical microscopy, and demonstrated stability in saltwater aqueous environments and in cold weather conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...