Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Microorganisms ; 12(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38674588

ABSTRACT

The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.

2.
Mol Med ; 30(1): 12, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243211

ABSTRACT

BACKGROUND: Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS: Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS: Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS: This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.


Subject(s)
Nuclear Proteins , RNA, Small Untranslated , Male , Humans , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Semen , Sperm Motility , Spermatozoa/metabolism , Environment
3.
Metabolites ; 13(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38132850

ABSTRACT

In recent years, metabolomics has become a valuable new resource in environmental monitoring programs based on the use of bio-indicators such as Mytilus galloprovincialis. The reproductive system is extremely susceptible to the effects of environmental pollutants, and in a previous paper, we showed metabolomic alterations in mussel spermatozoa exposed to metal chlorides of copper, nickel, and cadmium, and the mixture with these metals. In order to obtain a better overview, in the present work, we evaluated the metabolic changes in the male gonad under the same experimental conditions used in the previous work, using a metabolomic approach based on GC-MS analysis. A total of 248 endogenous metabolites were identified in the male gonads of mussels. Statistical analyses of the data, including partial least squares discriminant analysis, enabled the identification of key metabolites through the use of variable importance in projection scores. Furthermore, a metabolite enrichment analysis revealed complex and significant interactions within different metabolic pathways and between different metabolites. Particularly significant were the results on pyruvate metabolism, glycolysis, and gluconeogenesis, and glyoxylate and dicarboxylate metabolism, which highlighted the complex and interconnected nature of these biochemical processes in mussel gonads. Overall, these results add new information to the understanding of how certain pollutants may affect specific physiological functions of mussel gonads.

4.
Metabolites ; 13(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37623886

ABSTRACT

Metabolomics is a method that provides an overview of the physiological and cellular state of a specific organism or tissue. This method is particularly useful for studying the influence the environment can have on organisms, especially those used as bio-indicators, e.g., Mytilus galloprovincialis. Nevertheless, a scarcity of data on the complete metabolic baseline of mussel tissues still exists, but more importantly, the effect of mussel exposure to certain heavy metals on spermatozoa is unknown, also considering that, in recent years, the reproductive system has proved to be very sensitive to the effects of environmental pollutants. In order to fill this knowledge gap, the similarities and differences in the metabolic profile of spermatozoa of mussels exposed to metallic chlorides of copper, nickel, and cadmium, and to the mixture to these metals, were studied using a metabolomics approach based on GC-MS analysis, and their physiological role was discussed. A total of 237 endogenous metabolites were identified in the spermatozoa of these mussel. The data underwent preprocessing steps and were analyzed using statistical methods such as PLS-DA. The results showed effective class separation and identified key metabolites through the VIP scores. Heatmaps and cluster analysis further evaluated the metabolites. The metabolite-set enrichment analysis revealed complex interactions within metabolic pathways and metabolites, especially involving glucose and central carbon metabolism and oxidative stress metabolism. Overall, the results of this study are useful to better understand how some pollutants can affect the specific physiological functions of the spermatozoa of this mussel, as well as for further GC-MS-based metabolomic health and safety studies of marine bivalves.

5.
Proteomics Clin Appl ; 17(6): e2300048, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37650258

ABSTRACT

PURPOSE: The SARS-CoV-2 pandemic prompted the development and use of next-generation vaccines. Among these, mRNA-based vaccines consist of injectable solutions of mRNA encoding for a recombinant Spike, which is distinguishable from the wild-type protein due to specific amino acid variations introduced to maintain the protein in a prefused state. This work presents a proteomic approach to reveal the presence of recombinant Spike protein in vaccinated subjects regardless of antibody titer. EXPERIMENTAL DESIGN: Mass spectrometry examination of biological samples was used to detect the presence of specific fragments of recombinant Spike protein in subjects who received mRNA-based vaccines. RESULTS: The specific PP-Spike fragment was found in 50% of the biological samples analyzed, and its presence was independent of the SARS-CoV-2 IgG antibody titer. The minimum and maximum time at which PP-Spike was detected after vaccination was 69 and 187 days, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The presented method allows to evaluate the half-life of the Spike protein molecule "PP" and to consider the risks or benefits in continuing to administer additional booster doses of the SARS-CoV-2 mRNA vaccine. This approach is of valuable support to complement antibody level monitoring and represents the first proteomic detection of recombinant Spike in vaccinated subjects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , Proteomics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , RNA, Messenger/genetics , Vaccination
6.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298297

ABSTRACT

Natural bioactive compounds represent a new frontier of antimicrobial molecules, and the marine ecosystem represents a new challenge in this regard. In the present work, we evaluated the possibility of changes in the antibacterial activity of protamine-like (PL) proteins, the major nuclear basic protein components of Mytilus galloprovincialis sperm chromatin, after the exposure of mussels to subtoxic doses of chromium (VI) (1, 10, and 100 nM) and mercury (1, 10, and 100 pM) HgCl2, since these metals affect some properties of PL. After exposure, we analyzed the electrophoretic pattern of PLs by both acetic acid-urea polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and determined the MIC and MBC of these proteins on different gram+ and gram- bacteria. PLs, particularly after mussels were exposed to the highest doses of chromium and mercury, showed significantly reduced antibacterial activity. Just at the highest doses of exposure to the two metals, changes were found in the electrophoretic pattern of PLs, suggesting that there were conformational changes in these proteins, which were confirmed by the fluorescence measurements of PLs. These results provide the first evidence of a reduction in the antibacterial activity of these proteins following the exposure of mussels to these metals. Based on the results, hypothetical molecular mechanisms that could explain the decrease in the antibacterial activity of PLs are discussed.


Subject(s)
Mercury , Mytilus , Water Pollutants, Chemical , Animals , Male , Protamines/pharmacology , Protamines/metabolism , Mercury/toxicity , Chromium/toxicity , Chromium/metabolism , Ecosystem , Semen/metabolism , Nuclear Proteins/metabolism , Metals/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Water Pollutants, Chemical/metabolism
7.
Biomolecules ; 13(3)2023 03 12.
Article in English | MEDLINE | ID: mdl-36979455

ABSTRACT

Nickel is associated with reproductive toxicity, but little is known about the molecular mechanisms of nickel-induced effects on sperm chromatin and protamine-like proteins (PLs). In the present work, we analyzed PLs from Mytilus galloprovincialis by urea-acetic acid polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and assessed their binding to DNA by Electrophoretic Mobility Shift Assay (EMSA) after exposing mussels to 5, 15, and 35 µM NiCl2 for 24 h. In addition, a time course of digestion with MNase and release of PLs from sperm nuclei by the NaCl gradient was performed. For all exposure doses, in AU-PAGE, there was an additional migrating band between PL-III and PL-IV, corresponding to a fraction of PLs in the form of peptides detected by SDS-PAGE. Alterations in DNA binding of PLs were observed by EMSA after exposure to 5 and 15 µM NiCl2, while, at all NiCl2 doses, increased accessibility of MNase to sperm chromatin was found. The latter was particularly relevant at 15 µM NiCl2, a dose at which increased release of PLII and PLIII from sperm nuclei and the highest value of nickel accumulated in the gonads were also found. Finally, at all exposure doses, there was also an increase in PARP expression, but especially at 5 µM NiCl2. A possible molecular mechanism for the toxic reproductive effects of nickel in Mytilus galloprovincialis is discussed.


Subject(s)
Chromatin , Mytilus , Animals , Male , Chromatin/metabolism , Nickel/metabolism , Mytilus/metabolism , Semen/metabolism , Protamines/metabolism , Protamines/pharmacology , Spermatozoa/metabolism , DNA/metabolism
8.
Article in English | MEDLINE | ID: mdl-36078739

ABSTRACT

The Valley of Sacco River (VSR) (Latium, Italy) is an area with large-scale industrial chemical production that has led over time to significant contamination of soil and groundwater with various industrial pollutants, such as organic pesticides, dioxins, organic solvents, heavy metals, and particularly, volatile organic compounds (VOCs). In the present study, we investigated the potential impact of VOCs on the spermatozoa of healthy young males living in the VSR, given the prevalent presence of several VOCs in the semen of these individuals. To accomplish this, spermiograms were conducted followed by molecular analyses to assess the content of sperm nuclear basic proteins (SNBPs) in addition to the protamine-histone ratio and DNA binding of these proteins. We found drastic alterations in the spermatozoa of these young males living in the VSR. Alterations were seen in sperm morphology, sperm motility, sperm count, and protamine/histone ratios, and included significant reductions in SNBP-DNA binding capacity. Our results provide preliminary indications of a possible correlation between the observed alterations and the presence of specific VOCs.


Subject(s)
Sperm Motility , Spermatozoa , Volatile Organic Compounds , Histones/chemistry , Humans , Italy/epidemiology , Male , Nuclear Proteins/chemistry , Protamines/analysis , Protamines/genetics , Protamines/metabolism , Rivers , Semen , Spermatozoa/abnormalities , Spermatozoa/metabolism , Volatile Organic Compounds/adverse effects , Volatile Organic Compounds/toxicity , Water Pollution/adverse effects
9.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628502

ABSTRACT

Phosphatidylserine (PS) translocation to the external membrane leaflet represents a key mechanism in the pathophysiology of human erythrocytes (RBC) acting as an "eat me" signal for the removal of aged/stressed cells. Loss of physiological membrane asymmetry, however, can lead to adverse effects on the cardiovascular system, activating a prothrombotic activity. The data presented indicate that structurally related olive oil phenols prevent cell alterations induced in intact human RBC exposed to HgCl2 (5-40 µM) or Ca2+ ionophore (5 µM), as measured by hallmarks including PS exposure, reactive oxygen species generation, glutathione depletion and microvesicles formation. The protective effect is observed in a concentration range of 1-30 µM, hydroxytyrosol being the most effective; its in vivo metabolite homovanillic alcohol still retains the biological activity of its dietary precursor. Significant protection is also exerted by tyrosol, in spite of its weak scavenging activity, indicating that additional mechanisms are involved in the protective effect. When RBC alterations are mediated by an increase in intracellular calcium, the protective effect is observed at higher concentrations, indicating that the selected phenols mainly act on Ca2+-independent mechanisms, identified as protection of glutathione depletion. Our findings strengthen the nutritional relevance of olive oil bioactive compounds in the claimed health-promoting effects of the Mediterranean Diet.


Subject(s)
Mercury , Phosphatidylserines , Erythrocytes/metabolism , Glutathione/metabolism , Humans , Mercury/pharmacology , Olive Oil/pharmacology , Phenols/metabolism , Phenols/pharmacology , Phosphatidylserines/metabolism
10.
Biomolecules ; 12(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35053235

ABSTRACT

Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3ß-HSD and 17ß-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3ß-HSD and 17ß-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel.


Subject(s)
Chromatin/metabolism , Gonads/metabolism , Mercury/toxicity , Micrococcal Nuclease/chemistry , Mytilus/metabolism , Spermatozoa/metabolism , Animals , Male
11.
Article in English | MEDLINE | ID: mdl-34444582

ABSTRACT

Bisphenols and phthalates affect androgen receptor-mediated signaling that directly regulates Kallikrein-Related serine Peptidase 3 (KLK3) secretion, indicating that environmental factors may play a role in KLK3 secretion. With the aim of obtaining preliminary data on whether KLK3 could serve as an early marker of environmental pollution effects, in 61 and 58 healthy women living in a high environmental impact (HEI) and low environmental impact (LEI) area, respectively, serum KLK3 levels at different phases of menstrual cycle were measured. KLK3 values resulted in always being higher in the HEI group with respect to the LEI group. These differences were particularly relevant in the ovulatory phase (cycle day 12°-13°) of the menstrual cycle. The differences in KLK3 values during the three phases of the menstrual cycle were significant in the LEI group differently from the HEI group. In addition, higher progesterone levels were observed in the LEI group with respect to the HEI group in the luteal phase, indicating an opposite trend of KLK3 and progesterone in this phase of the menstrual cycle. Although changes in KLK3 could also depend on other factors, these preliminary data could be an early indication of an expanding study of the role of biomarkers in assessing early environmental effects for female reproductive health.


Subject(s)
Luteal Phase , Progesterone , Environmental Exposure , Estradiol , Female , Humans , Kallikreins , Male , Menstrual Cycle , Prostate-Specific Antigen , Serine
12.
Article in English | MEDLINE | ID: mdl-34202243

ABSTRACT

Several studies indicate that semen quality has strongly declined in the last decades worldwide. Air pollution represents a significant co-factor with the COVID-19 impact and has negative effects on the male reproductive system, through pro-oxidant, inflammatory and immune-dysregulating mechanisms. It has recently been reported that chronic exposure to PM2.5 causes overexpression of the alveolar ACE2 receptor, the entry route of SARS-CoV-2 into the organism shared by the lungs and testis where expression is highest in the body. In the testis, the ACE2/Ang-(1-7)/MasR pathway plays an important role in the regulation of spermatogenesis and an indirect mechanism of testicular damage could be due to the blockade of the ACE2 receptor by SARS-CoV-2. This prevents the conversion of specific angiotensins, and their excess causes inflammation with the overproduction of cytokines. PM2.5-induced overexpression of the alveolar ACE2 receptor, in turn, could increase local viral load in patients exposed to pollutants, producing ACE2 receptor depletion and compromising host defenses. By presenting an overall view of epidemiological data and molecular mechanisms, this manuscript aims to interpret the possible synergistic effects of both air pollution and COVID-19 on male reproductive function, warning that the spread of SARS-CoV-2 in the fertile years may represent a significant threat to global reproductive health. All of this should be of great concern, especially for men of the age of maximum reproductive capacity, and an important topic of debate for policy makers. Altered environmental conditions, together with the direct and indirect short- and long-term effects of viral infection could cause a worsening of semen quality with important consequences for male fertility, especially in those areas with higher environmental impact.


Subject(s)
Air Pollution , COVID-19 , Air Pollution/adverse effects , Fertility , Humans , Male , Peptidyl-Dipeptidase A , Proto-Oncogene Mas , SARS-CoV-2 , Semen Analysis
13.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072703

ABSTRACT

Mercury (Hg) is a highly toxic and widespread pollutant. We previously reported that the exposure of Mytilus galloprovincialis for 24 h to doses of HgCl2 similar to those found in seawater (range 1-100 pM) produced alterations in the properties of protamine-like (PL) proteins that rendered them unable to bind and protect DNA from oxidative damage. In the present work, to deepen our studies, we analyzed PL proteins by turbidimetry and fluorescence spectroscopy and performed salt-induced release analyses of these proteins from sperm nuclei after the exposure of mussels to HgCl2 at the same doses. Turbidity assays indicated that mercury, at these doses, induced PL protein aggregates, whereas fluorescence spectroscopy measurements showed mercury-induced conformational changes. Indeed, the mobility of the PLII band changed in sodium dodecyl sulphate-polyacrylamide gel electrophoresis, particularly after exposure to 10-pM HgCl2, confirming the mercury-induced structural rearrangement. Finally, exposure to HgCl2 at all doses produced alterations in PL-DNA binding, detectable by DNA absorption spectra after the PL protein addition and by a decreased release of PLII and PLIII from the sperm nuclei. In conclusion, in this paper, we reported Hg-induced PL protein alterations that could adversely affect mussel reproductive activity, providing an insight into the molecular mechanism of Hg-related infertility.


Subject(s)
Chromatin/drug effects , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Mercury/pharmacology , Mytilus , Spermatozoa/drug effects , Spermatozoa/metabolism , Animals , Cell Nucleus , Chromatin/chemistry , Chromatin/genetics , DNA-Binding Proteins/chemistry , Male , Mercuric Chloride/pharmacology , Mercury/toxicity , Seawater , Spectrum Analysis , Water Pollutants/pharmacology , Water Pollutants/toxicity
14.
Environ Sci Pollut Res Int ; 28(28): 37031-37040, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34053043

ABSTRACT

The epidemic of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted worldwide with its infectious spread and mortality rate. Thousands of articles have been published to tackle this crisis and many of these have indicated that high air pollution levels may be a contributing factor to high outbreak rates of COVID-19. Atmospheric pollutants, indeed, producing oxidative stress, inflammation, immuno-unbalance, and systemic coagulation, may be a possible significant co-factor of further damage, rendering the body prone to infections by a variety of pathogens, including viruses. Spermatozoa are extremely responsive to prooxidative effects produced by environmental pollutants and may serve as a powerful alert that signals the extent that environmental pressure, in a specific area, is doing damage to humans. In order to improve our current knowledge on this topic, this review article summarizes the relevant current observations emphasizing the weight that environmental pollution has on the sensitivity of a given population to several diseases and how semen quality, may be a potential indicator of sensitivity for virus insults (including SARS-CoV-2) in high polluted areas, and help to predict the risk for harmful effects of the SARS-CoV-2 epidemic. In addition, this review focused on the potential routes of virus transmission that may represent a population health risk and also identified the areas of critical importance that require urgent research to assess and manage the COVID-19 outbreak.


Subject(s)
Air Pollution , COVID-19 , Disease Outbreaks , Humans , Male , SARS-CoV-2 , Semen Analysis
15.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562685

ABSTRACT

Mercury (Hg) is an environmental pollutant that impacts human and ecosystem health. In our previous works, we reported alterations in the properties of Mytilus galloprovincialis protamine-like (PL) proteins after 24 h of exposure to subtoxic doses of toxic metals such as copper and cadmium. The present work aims to assess the effects of 24 h of exposure to 1, 10, and 100 pM HgCl2 on spermatozoa and PL proteins of Mytilus galloprovincialis. Inductively coupled plasma-mass spectrometry indicated accumulation of this metal in the gonads of exposed mussels. Further, RT-qPCR analyses showed altered expression levels of spermatozoa mt10 and hsp70 genes. In Mytilus galloprovincialis, PL proteins represent the major basic component of sperm chromatin. These proteins, following exposure of mussels to HgCl2, appeared, by SDS-PAGE, partly as aggregates and showed a decreased DNA-binding capacity that rendered them unable to prevent DNA damage, in the presence of CuCl2 and H2O2. These results demonstrate that even these doses of HgCl2 exposure could affect the properties of PL proteins and result in adverse effects on the reproductive system of this organism. These analyses could be useful in developing rapid and efficient chromatin-based genotoxicity assays for pollution biomonitoring programs.


Subject(s)
Mercuric Chloride/toxicity , Mytilus/genetics , Protamines/genetics , Spermatozoa/drug effects , Animals , Cadmium/toxicity , Chromatin/drug effects , Chromatin/genetics , Copper/toxicity , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , Hydrogen Peroxide/adverse effects , Male , Mass Spectrometry , Mercury/analysis , Mytilus/drug effects , Spermatozoa/chemistry , Water Pollutants, Chemical/toxicity
16.
Int J Mol Sci ; 21(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933216

ABSTRACT

In our previous work, we reported alterations in protamines/histones ratio, in DNA binding of these proteins and their involvement in DNA oxidative damage in 84% of the young men living in the Land of Fires. In the present work, we extended our findings, evaluating any alterations in spermatozoa of a family case, a father and son, living in this area, to also give a first look at the possibility of transgenerational inherited effects of environmental contaminants on the molecular alterations of sperm nuclear basic proteins (SNBP), DNA and semen parameters. In the father and son, we found a diverse excess of copper and chromium in the semen, different alterations in SNBP content and low DNA binding affinity of these proteins. In addition, DNA damage, in the presence of CuCl2 and H2O2, increased by adding both the father and son SNBP. Interestingly, son SNBP, unlike his father, showed an unstable DNA binding and were able to produce DNA damage even without external addition of CuCl2, in line with a lower seminal antioxidant activity than the father. The peculiarity of some characteristics of son semen could be a basis for possible future studies on transgenerational effects of pollutants on fertility.


Subject(s)
Environmental Pollutants/adverse effects , Spermatozoa/drug effects , Adolescent , Antioxidants/metabolism , DNA Damage/drug effects , Environmental Exposure/adverse effects , Fertility/drug effects , Histones/metabolism , Humans , Hydrogen Peroxide/metabolism , Infertility, Male/chemically induced , Infertility, Male/metabolism , Male , Middle Aged , Nuclear Proteins/metabolism , Protamines/metabolism , Semen/drug effects , Semen/metabolism , Semen Analysis/methods , Sperm Count/methods , Sperm Motility/drug effects , Spermatozoa/metabolism
17.
Int J Mol Sci ; 21(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899890

ABSTRACT

Oxidative damage (production and localization of reactive oxygen species) and related response mechanisms (activity of antioxidant enzymes), and induction of Heat Shock Protein 70 expression, have been studied in the toxi-tolerant liverwort Conocephalum conicum (Marchantiales) in response to cadmium stress using two concentrations (36 and 360 µM CdCl2). Cadmium dose-dependent production of reactive oxygen species (ROS) and related activity of antioxidant enzymes was observed. The expression level of heat shock protein (Hsp)70, instead, was higher at 36 µM CdCl2 in comparison with the value obtained after exposure to 360 µM CdCl2, suggesting a possible inhibition of the expression of this stress gene at higher cadmium exposure doses. Biological responses were related to cadmium bioaccumulation. Since C. conicum was able to respond to cadmium stress by modifying biological parameters, we discuss the data considering the possibility of using these biological changes as biomarkers of cadmium pollution.


Subject(s)
Cadmium/adverse effects , Cadmium/metabolism , Hepatophyta/metabolism , Antioxidants , HSP70 Heat-Shock Proteins/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological/physiology
18.
Molecules ; 25(14)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707650

ABSTRACT

Mercury (Hg) is a global environmental pollutant that affects human and ecosystem health. With the aim of exploring the Hg-induced protein modifications, intact human erythrocytes were exposed to HgCl2 (1-60 µM) and cytosolic and membrane proteins were analyzed by SDS-PAGE and AU-PAGE. A spectrofluorimetric assay for quantification of Reactive Oxygen Species (ROS) generation was also performed. Hg2+ exposure induces alterations in the electrophoretic profile of cytosolic proteins with a significant decrease in the intensity of the hemoglobin monomer, associated with the appearance of a 64 kDa band, identified as a mercurized tetrameric form. This protein decreases with increasing HgCl2 concentrations and Hg-induced ROS formation. Moreover, it appears resistant to urea denaturation and it is only partially dissociated by exposure to dithiothreitol, likely due to additional protein-Hg interactions involved in aggregate formation. In addition, specific membrane proteins, including band 3 and cytoskeletal proteins 4.1 and 4.2, are affected by Hg2+-treatment. The findings reported provide new insights into the Hg-induced possible detrimental effects on erythrocyte physiology, mainly related to alterations in the oxygen binding capacity of hemoglobin as well as decreases in band 3-mediated anion exchange. Finally, modifications of cytoskeletal proteins 4.1 and 4.2 could contribute to the previously reported alteration in cell morphology.


Subject(s)
Environmental Pollutants/pharmacology , Erythrocytes/metabolism , Hemoglobins/chemistry , Membrane Proteins/metabolism , Mercury/pharmacology , Oxidative Stress/drug effects , Dithiothreitol/pharmacology , Erythrocytes/chemistry , Erythrocytes/drug effects , Glutathione/pharmacology , Humans , Reactive Oxygen Species/metabolism
19.
Int J Mol Sci ; 21(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545547

ABSTRACT

DNA oxidative damage is one of the main concerns being implicated in severe cell alterations, promoting different types of human disorders and diseases. For their characteristics, male gametes are the most sensitive cells to the accumulation of damaged DNA. We have recently reported the relevance of arginine residues in the Cu(II)-induced DNA breakage of sperm H1 histones. In this work, we have extended our previous findings investigating the involvement of human sperm nuclear basic proteins on DNA oxidative damage in healthy males presenting copper and chromium excess in their semen. We found in 84% of those males an altered protamines/histones ratio and a different DNA binding mode even for those presenting a canonical protamines/histones ratio. Furthermore, all the sperm nuclear basic proteins from these samples that resulted were involved in DNA oxidative damage, supporting the idea that these proteins could promote the Fenton reaction in DNA proximity by increasing the availability of these metals near the binding surface of DNA. In conclusion, our study reveals a new and unexpected behavior of human sperm nuclear basic proteins in oxidative DNA damage, providing new insights for understanding the mechanisms related to processes in which oxidative DNA damage is implicated.


Subject(s)
Arginine/analysis , Copper/analysis , DNA/genetics , Nuclear Proteins/metabolism , Oxidative Stress , Spermatozoa/chemistry , DNA/metabolism , Environmental Pollution/adverse effects , Gene Expression Regulation , Healthy Volunteers , Histones/metabolism , Humans , Italy , Male , Protamines/metabolism , Protein Binding , Spermatozoa/metabolism , Young Adult
20.
Minerva Med ; 111(4): 330-336, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31958920

ABSTRACT

BACKGROUND: Acute liver failure (ALF) is a rare but often lethal syndrome. In Italy, recent data on its incidence and causes are lacking. We report here the epidemiological analysis of ALF cases observed in Campania, a Southern Italian region, over the last 25 years. METHODS: Medical records of ALF cases hospitalized from 1992 to 2018 were retrospectively analyzed. RESULTS: Two hundred ten ALF cases occurred during 1992-2018: 103 (49%) hepatitis B virus (HBV)-related (including 5 cases also infected with Delta virus), 39 (19%) from undetermined cause, 36 (17%) drug-induced, 11 (5%) Wilson's disease-associated, 8 (4%) hepatitis A virus (HAV)-related and 12 (6%) from other causes. Separate time-periods analysis of data showed a significant progressive decrease in ALF incidence mainly attributable to a decline of HBV and other viruses etiology. Already before 2010, HAV or Delta virus-related cases have no longer been observed. No hepatitis C or E virus-related ALF was detected through the study period. A progressive decrease in frequency of ALF due to undetermined causes or drug was also evident. CONCLUSIONS: A decrease in ALF incidence and a changing in its etiology were observed in Campania during 1992-2018. Both results were likely mainly due to 1991 introduction of HBV universal vaccination and may be considered generalizable nationwide.


Subject(s)
Liver Failure, Acute/epidemiology , Adolescent , Adult , Female , Humans , Incidence , Italy/epidemiology , Male , Middle Aged , Retrospective Studies , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...