Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(9): 093601, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463633

ABSTRACT

Efficient interaction of light and matter at the ultimate limit of single photons and single emitters is of great interest from a fundamental point of view and for emerging applications in quantum engineering. However, the difficulty of generating single-photon streams with specific wavelengths, bandwidths, and power as well as the weak interaction probability of a single photon with an optical emitter pose a formidable challenge toward this goal. Here, we demonstrate a general approach based on the creation of single photons from a single emitter and their use for performing spectroscopy on a second emitter situated at a distance. While this first proof of principle realization uses organic molecules as emitters, the scheme is readily extendable to quantum dots and color centers. Our work ushers in a new line of experiments that provide access to the coherent and nonlinear couplings of few emitters and few propagating photons.

2.
Opt Express ; 18(13): 13829-35, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20588515

ABSTRACT

We demonstrate strong coupling of single photons emitted by individual molecules at cryogenic and ambient conditions to individual nanoparticles. We provide images obtained both in transmission and reflection, where an efficiency greater than 55% was achieved in converting incident narrow-band photons to plasmon-polaritons (plasmons) of a silver nanoparticle. Our work paves the way to spectroscopy and microscopy of nano-objects with sub-shot noise beams of light and to triggered generation of single plasmons and electrons in a well-controlled manner.


Subject(s)
Interferometry/methods , Metal Nanoparticles , Nanotechnology/methods , Quantum Theory , Surface Plasmon Resonance/methods , Lasers , Microscopy, Electron , Photons , Silver
3.
Phys Rev Lett ; 104(12): 123605, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20366534

ABSTRACT

We demonstrate two-photon interference using two remote single molecules as bright solid-state sources of indistinguishable photons. By varying the transition frequency and spectral width of one molecule, we tune and explore the effect of photon distinguishability. We discuss future improvements on the brightness of single-photon beams, their integration by large numbers on chips, and the extension of our experimental scheme to coupling and entanglement of distant molecules.

4.
Nature ; 460(7251): 76-80, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19571881

ABSTRACT

The transistor is one of the most influential inventions of modern times and is ubiquitous in present-day technologies. In the continuing development of increasingly powerful computers as well as alternative technologies based on the prospects of quantum information processing, switching and amplification functionalities are being sought in ultrasmall objects, such as nanotubes, molecules or atoms. Among the possible choices of signal carriers, photons are particularly attractive because of their robustness against decoherence, but their control at the nanometre scale poses a significant challenge as conventional nonlinear materials become ineffective. To remedy this shortcoming, resonances in optical emitters can be exploited, and atomic ensembles have been successfully used to mediate weak light beams. However, single-emitter manipulation of photonic signals has remained elusive and has only been studied in high-finesse microcavities or waveguides. Here we demonstrate that a single dye molecule can operate as an optical transistor and coherently attenuate or amplify a tightly focused laser beam, depending on the power of a second 'gating' beam that controls the degree of population inversion. Such a quantum optical transistor has also the potential for manipulating non-classical light fields down to the single-photon level. We discuss some of the hurdles along the road towards practical implementations, and their possible solutions.

5.
Opt Express ; 15(24): 15842-7, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-19550869

ABSTRACT

We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T = 1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and information processing experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...