Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(27): 17805-9, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27328161

ABSTRACT

The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.


Subject(s)
Benzaldehydes/chemistry , Organometallic Compounds/chemistry , Pancreatic Neoplasms/chemistry , Pancreatic Neoplasms/metabolism , Tin/chemistry , Cell Line, Tumor , Humans , Molecular Conformation , Quantum Theory , Spectrophotometry, Infrared , Vibration
2.
J Phys Condens Matter ; 24(6): 064102, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22277241

ABSTRACT

We studied the collective excitations in an aqueous solution of lithium chloride over the temperature range of 270-205 K using neutron and x-ray Brillouin scattering. Both neutron and x-ray experiments revealed the presence of low- and high-frequency excitations, similar to the low- and high-frequency excitations in pure water. These two excitations were detectable through the entire temperature range of the experiment, at all probed values of the scattering momentum transfer (0.2 Å(-1) < Q < 1.8 Å(-1)). A wider temperature range was investigated using elastic intensity neutron and x-ray scans. Clear evidence of the crossover in the dynamics of the water molecules in the solution was observed in the single-particle relaxational dynamics on the µeV (nanosecond) time scale, but not in the collective dynamics on the meV (picosecond) time scale.

3.
J Chem Phys ; 134(18): 184502, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21568516

ABSTRACT

The THz dynamics of liquid glycerol has been probed by inelastic x-ray scattering at different pressure spanning the 0.66-3 Kbar range. A comparison with ultrasound absorption results available in literature leads us to identify the presence of two different relaxations, a structural (slow) relaxation and a microscopic (fast) one. Although the former has been already thoroughly studied in glycerol by lower frequency spectroscopic techniques, no hints on the latter are so far available in literature. We observe that the characteristic timescale of this fast relaxation ranges in the sub-picosecond, tends to decrease with increasing the wave-vector and seems rather insensitive to pressure changes. Finally, the timescale and strength of the fast relaxation have a direct link revealing the microscopic, single particle, nature of the involved process.

4.
J Phys Condens Matter ; 22(48): 485601, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21406750

ABSTRACT

Phonons, the quantum mechanical representation of lattice vibrations, and their coupling to the electronic degrees of freedom are important for understanding thermal and electric properties of materials. For the first time, phonons have been measured using resonant inelastic x-ray scattering (RIXS) across the Cu K-edge in cupric oxide (CuO). Analyzing these spectra using an ultra-short core-hole lifetime approximation and exact diagonalization techniques, we can explain the essential inelastic features. The relative spectral intensities are related to the electron-phonon coupling strengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...