Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686919

ABSTRACT

Photopharmacology is a booming research area requiring a new generation of agents possessing simultaneous functions of photoswitching and pharmacophore. It is important that any practical implementation of photopharmacology ideally requires spatial control of the medicinal treatment zone. Thus, advances in the study of substances meeting all the listed requirements will lead to breakthrough research in the coming years. In this study, CQDs@phosphonate nanohybrids are presented for the first time and combine biocompatible and nontoxic luminescent carbon quantum dots (CQDs) with photoactive phosphonate enabling inhibition of butyrylcholinesterase (BChE), which is a prognostic marker of numerous diseases. The conjunction of these components in hybrids maintains photoswitching and provides enhancement of BChE inhibition. After laser irradiation with a wavelength of 266 nm, CQDs@phosphonate hybrids demonstrate a drastic increase of butyrylcholinesterase inhibition from 38% up to almost 100% and a simultaneous luminescence decrease. All the listed hybrid properties are demonstrated not only for in vitro experiments but also for complex biological samples, i.e., chicken breast. Thus, the most important achievement is the demonstration of hybrids characterized by a remarkable combination of all-in-one properties important for photopharmacology: (i) bioactivity toward butyrylcholinesterase inhibition, (ii) strong change of inhibition degree as a result of laser irradiation, luminescence as an indicator of (iii) bioactivity state, and of (iv) spatial localization on the surface of a sample.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985896

ABSTRACT

In this paper, we present a new methodology for creating 3D ordered porous nanocomposites based on anodic aluminum oxide template with polyaniline (PANI) and silver NPs. The approach includes in situ synthesis of polyaniline on templates of anodic aluminum oxide nanomembranes and laser-induced deposition (LID) of Ag NPs directly on the pore walls. The proposed method allows for the formation of structures with a high aspect ratio of the pores, topological ordering and uniformity of properties throughout the sample, and a high specific surface area. For the developed structures, we demonstrated their effectiveness as non-enzymatic electrochemical sensors on glucose in a concentration range crucial for medical applications. The obtained systems possess high potential for miniaturization and were applied to glucose detection in real objects-laboratory rat blood plasma.

3.
J Opt Soc Am A Opt Image Sci Vis ; 39(12): C74-C78, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36520726

ABSTRACT

We address the response of a Fabry-Perot interferometer to a monochromatic point source. We calculate the anticaustics (that is, the virtual wavefronts of null path difference) resulting from the successive internal reflections occurring in the system. They turn out to be a family of ellipsoids (or hyperboloids) of revolution, which allows us to reinterpret the operation of the Fabry-Perot interferometer from a geometrical point of view that facilitates comparison with other apparently disparate arrangements, such as Young's double slit.

4.
Materials (Basel) ; 15(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806794

ABSTRACT

Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.

5.
ACS Photonics ; 9(6): 1842-1851, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35726245

ABSTRACT

Concentrating light strongly calls for appropriate polarization patterns of the focused light beam and for up to a full 4π solid angle geometry. Focusing on the extreme requires efficient coupling to nanostructures of one kind or another via cylindrical vector beams having such patterns, the details of which depend on the geometry and property of the respective nanostructure. Cylindrical vector beams can not only be used to study a nanostructure, but also vice versa. Closely related is the discussion of topics such as the ultimate diffraction limit, a resonant field enhancement near nanoscopic absorbers, as well as speculations about nonresonant field enhancement, which, if it exists, might be relevant to pair production in vacuum. These cases do require further rigorous simulations and more decisive experiments. While there is a wide diversity of scenarios, there are also conceptually very different models offering helpful intuitive pictures despite this diversity.

6.
Opt Express ; 30(2): 1013-1020, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209246

ABSTRACT

An efficient optical scheme for coherent combining of radiation from the output of a multicore fiber (MCF) with a square array of cores in the out-of-phase supermode is proposed. The scheme uses only simple optical elements and is suitable for an arbitrary number of MCF cores. In a proof-of-concept experiment broadband pulses transmitted through a 25-core fiber were combined with 81% efficiency and good beam quality. In numerical modeling a close to unity efficiency is obtained for a large number of cores. The proposed scheme can be used in a reverse direction for efficient beam splitting and launching the out-of-phase supermode into the MCF.

7.
Opt Lett ; 47(3): 477-480, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35103655

ABSTRACT

We demonstrate that the multipoles associated with the density matrix are truly observable quantities that can be unambiguously determined from intensity moments. Given their correct transformation properties, these multipoles are the natural variables to deal with a number of problems in the quantum domain. In the case of polarization, the moments are measured after the light has passed through two quarter-wave plates, one half-wave plate, and a polarizing beam splitter for specific values of the angles of the wave plates. For more general two-mode problems, equivalent measurements can be performed.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615998

ABSTRACT

We present an efficient and easily implemented approach for creating stable electrocatalytically active nanocomposites based on polyaniline (PANI) with metal NPs. The approach combines in situ synthesis of polyaniline followed by laser-induced deposition (LID) of Ag, Pt, and AgPt NPs. The observed peculiarity of LID of PANI is the role of the substrate during the formation of multi-metallic nanoparticles (MNP). This allows us to solve the problem of losing catalytically active particles from the electrode's surface in electrochemical use. The synthesized PANI/Ag, PANI/Pt, and PANI/AgPt composites were studied with different techniques, such as SEM, EDX, Raman spectroscopy, and XPS. These suggested a mechanism for the formation of MNP on PANI. The MNP-PANI interaction was demonstrated, and the functionality of the nanocomposites was studied through the electrocatalysis of the hydrogen evolution reaction. The PANI/AgPt nanocomposites demonstrated both the best activity and the most stable metal component in this process. The suggested approach can be considered as universal, since it can be extended to the creation of electrocatalytically active nanocomposites with various mono- and multi-metallic NPs.

9.
Materials (Basel) ; 14(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947106

ABSTRACT

The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs-wood pile and snowflake-with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.

10.
Opt Express ; 29(8): 12429-12439, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33985002

ABSTRACT

Recently, it was shown that vector beams can be utilized for fast kinematic sensing via measurements of their global polarization state [Optica2, 864 (2015)10.1364/OPTICA.2.000864]. The method relies on correlations between the spatial and polarization degrees of freedom of the illuminating field which result from its nonseparable mode structure. Here, we extend the method to the nonparaxial regime. We study experimentally and theoretically the far-field polarization state generated by the scattering of a dielectric microsphere in a tightly focused vector beam as a function of the particle position. Using polarization measurements only, we demonstrate position sensing of a Mie particle in three dimensions. Our work extends the concept of back focal plane interferometry and highlights the potential of polarization analysis in optical tweezers employing structured light.

11.
Nat Commun ; 12(1): 1666, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712593

ABSTRACT

Free-space optical communication is a promising means to establish versatile, secure and high-bandwidth communication between mobile nodes for many critical applications. While the spatial modes of light offer a degree of freedom to increase the information capacity of an optical link, atmospheric turbulence can introduce severe distortion to the spatial modes and lead to data degradation. Here, we demonstrate experimentally a vector-beam-based, turbulence-resilient communication protocol, namely spatial polarization differential phase shift keying (SPDPSK), that can reliably transmit high-dimensional information through a turbulent channel without the need of any adaptive optics for beam compensation. In a proof-of-principle experiment with a controllable turbulence cell, we measure a channel capacity of 4.84 bits per pulse using 34 vector modes through a turbulent channel with a scintillation index of 1.09, and 4.02 bits per pulse using 18 vector modes through even stronger turbulence corresponding to a scintillation index of 1.54.

12.
Opt Lett ; 45(19): 5299-5302, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001879

ABSTRACT

We propose and investigate theoretically the Kerr squeezing of light at a wavelength of 2 µm in chalcogenide fibers with large nonlinearity and-this is the advance-with much reduced attenuation. We present suitably realistic but straightforward designs of low-loss step-index single-mode fibers with the nonlinear Kerr coefficient 3 to 4 orders of magnitude higher than for standard telecommunication fibers, and we give estimations of optimal squeezing for continuous wave laser signal in the considered fibers based on As2S3 or As2Se3 glasses.

13.
Opt Express ; 28(21): 30784-30796, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115072

ABSTRACT

Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the properties of the detection schemes often require the use of optical filters in order to combine both detection methods in a common experiment. This limits the efficiency and the overall achievable squeezing of the experiment. In our work, we use photon subtraction to implement the distillation of pulsed squeezed states originating from a genuinely spatially and temporally single-mode parametric down-conversion source in non-linear waveguides. Due to the distillation, we witness an improvement of 0.17 dB from an initial squeezing value of -1.648 ± 0.002 dB, while achieving a purity of 0.58, and confirm the non-Gaussianity of the distilled state via the higher-order cumulants. With this, we demonstrate the source's suitability for scalable hybrid quantum network applications with pulsed quantum light.

14.
Opt Lett ; 45(17): 4774-4777, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870854

ABSTRACT

We propose a simple, highly scalable, and very efficient scheme for coherent combining of tiled aperture arrays. The scheme relies on changing the beam phasing paradigm from the commonly used in-phase pattern to the out-of-phase pattern (interleaved 0/π phases in the neighboring channels) and using an additional simple combining stage (a beamsplitter). In a proof-of-concept experiment with a one-dimensional fiber array, we achieved 89% of the power in the main combined beam. In numerical modeling, we found optimal conditions leading to 98% efficiency for an unlimited number of channels and arbitrary small initial aperture fill factors. The scheme is highly resistant to the effect of sub-aperture clipping and suitable for combining ultrashort pulses.

15.
Nanomaterials (Basel) ; 10(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679699

ABSTRACT

Until recently, planar carbonaceous structures such as graphene did not show any birefringence under normal incidence. In contrast, a recently reported novel orthorhombic carbonaceous structure with metal nanoparticle inclusions does show intrinsic birefringence, outperforming other natural orthorhombic crystalline materials. These flake-like structures self-assemble during a laser-induced growth process. In this article, we explore the potential of this novel material and the design freedom during production. We study in particular the dependence of the optical and geometrical properties of these hybrid carbon-metal flakes on the fabrication parameters. The influence of the laser irradiation time, concentration of the supramolecular complex in the solution, and an external electric field applied during the growth process are investigated. In all cases, the self-assembled metamaterial exhibits a strong linear birefringence in the visible spectral range, while the wavelength-dependent attenuation was found to hinge on the concentration of the supramolecular complex in the solution. By varying the fabrication parameters one can steer the shape and size of the flakes. This study provides a route towards fabrication of novel hybrid carbon-metal flakes with tailored optical and geometrical properties.

16.
Phys Rev Lett ; 124(21): 210401, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530676

ABSTRACT

Recent quantum technologies utilize complex multidimensional processes that govern the dynamics of quantum systems. We develop an adaptive diagonal-element-probing compression technique that feasibly characterizes any unknown quantum processes using much fewer measurements compared to conventional methods. This technique utilizes compressive projective measurements that are generalizable to an arbitrary number of subsystems. Both numerical analysis and experimental results with unitary gates demonstrate low measurement costs, of order O(d^{2}) for d-dimensional systems, and robustness against statistical noise. Our work potentially paves the way for a reliable and highly compressive characterization of general quantum devices.

17.
Opt Express ; 28(7): 10239-10252, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225613

ABSTRACT

Undoubtedly, Raman spectroscopy is one of the most elaborate spectroscopy tools in materials science, chemistry, medicine and optics. However, when it comes to the analysis of nanostructured specimens or individual sub-wavelength-sized systems, the access to Raman spectra resulting from different excitation schemes is usually very limited. For instance, the excitation with an electric field component oriented perpendicularly to the substrate plane is a difficult task. Conventionally, this can only be achieved by mechanically tilting the sample or by sophisticated sample preparation. Here, we propose a novel experimental method based on the utilization of polarization tailored light for Raman spectroscopy of individual nanostructures. As a proof of principle, we create three-dimensional electromagnetic field distributions at the nanoscale using tightly focused cylindrical vector beams impinging normally onto the specimen, hence keeping the traditional beam-path of commercial Raman systems. In order to demonstrate the convenience of this excitation scheme, we use a sub-wavelength diameter gallium-nitride nanostructure as a test platform and show experimentally that its Raman spectra depend sensitively on its location relative to the focal vector field. The observed Raman spectra can be attributed to the interaction with transverse and pure longitudinal electric field components. This novel technique may pave the way towards a characterization of Raman active nanosystems, granting direct access to growth-related parameters such as strain or defects in the material by using the full information of all Raman modes.

18.
Phys Rev Lett ; 124(1): 013607, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976723

ABSTRACT

We investigate the emission of single photons from CdSe/CdS dots-in-rod which are optically trapped in the focus of a deep parabolic mirror. Thanks to this mirror, we are able to image almost the full 4π emission pattern of nanometer-sized elementary dipoles and verify the alignment of the rods within the optical trap. From the motional dynamics of the emitters in the trap, we infer that the single-photon emission occurs from clusters comprising several emitters. We demonstrate the optical trapping of rod-shaped quantum emitters in a configuration suitable for efficiently coupling an ensemble of linear dipoles with the electromagnetic field in free space.

19.
Opt Express ; 27(19): 26346-26354, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674518

ABSTRACT

We examine the propagation of optical beams possessing different polarization states and spatial modes through the Ottawa River in Canada. A Shack-Hartmann wavefront sensor is used to record the distorted beam's wavefront. The turbulence in the underwater channel is analysed, and associated Zernike coefficients are obtained in real-time. Finally, we explore the feasibility of transmitting polarization states as well as spatial modes through the underwater channel for applications in quantum cryptography.

20.
Phys Rev Lett ; 123(12): 123606, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633963

ABSTRACT

Extreme events appear in many physics phenomena, whenever the probability distribution has a "heavy tail" differing very much from the equilibrium one. Most unusual are the cases of power-law (Pareto) probability distributions. Among their many manifestations in physics, from "rogue waves" in the ocean to Lévy flights in random walks, Pareto dependences can follow very different power laws. For some outstanding cases, the power exponents are less than 2, leading to indefinite values not only for higher moments but also for the mean. Here we present the first evidence of indefinite-mean Pareto distribution of photon numbers at the output of nonlinear effects pumped by parametrically amplified vacuum noise, known as bright squeezed vacuum (BSV). We observe a Pareto distribution with power exponent 1.31 when BSV is used as a pump for supercontinuum generation, and other heavy-tailed distributions (however, with definite moments) when it pumps optical harmonics generation. Unlike in other fields, we can flexibly control the Pareto exponent by changing the experimental parameters. This extremely fluctuating light is interesting for ghost imaging and for quantum thermodynamics as a resource to produce more efficiently nonequilibrium states by single-photon subtraction, the latter of which we demonstrate experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...