Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 55(8): 1555-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19439731

ABSTRACT

BACKGROUND: Influenza A viruses are medically important viral pathogens that cause significant mortality and morbidity throughout the world. The recent emergence of a novel human influenza A virus (H1N1) poses a serious health threat. Molecular tests for rapid detection of this virus are urgently needed. METHODS: We developed a conventional 1-step RT-PCR assay and a 1-step quantitative real-time RT-PCR assay to detect the novel H1N1 virus, but not the seasonal H1N1 viruses. We also developed an additional real-time RT-PCR that can discriminate the novel H1N1 from other swine and human H1 subtype viruses. RESULTS: All of the assays had detection limits for the positive control in the range of 1.0 x 10(-4) to 2.0 x 10(-3) of the median tissue culture infective dose. Assay specificities were high, and for the conventional and real-time assays, all negative control samples were negative, including 7 human seasonal H1N1 viruses, 1 human H2N2 virus, 2 human seasonal H3N2 viruses, 1 human H5N1 virus, 7 avian influenza viruses (HA subtypes 4, 5, 7, 8, 9, and 10), and 48 nasopharyngeal aspirates (NPAs) from patients with noninfluenza respiratory diseases; for the assay that discriminates the novel H1N1 from other swine and human H1 subtype viruses, all negative controls were also negative, including 20 control NPAs, 2 seasonal human H1N1 viruses, 2 seasonal human H3N2 viruses, and 2 human H5N1 viruses. CONCLUSIONS: These assays appear useful for the rapid diagnosis of cases with the novel H1N1 virus, thereby allowing better pandemic preparedness.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/diagnosis , Molecular Diagnostic Techniques/methods , Orthomyxoviridae Infections/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Swine/virology , Animals , Base Sequence , DNA, Viral/analysis , DNA, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H2N2 Subtype/classification , Influenza A Virus, H2N2 Subtype/genetics , Influenza A Virus, H2N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza, Human/virology , Molecular Diagnostic Techniques/economics , Orthomyxoviridae Infections/virology , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/economics , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...