Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 168(4): 3458-72, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23706318

ABSTRACT

BACKGROUND: The mechanism of how reactive oxygen species (ROS) regulate cardiac differentiation in the long-run is unclear and the effect of pro-inflammatory cytokines secreted during myocardial infarction on the cardiac differentiation of embryonic stem cells (ESCs) is unknown. The aims of this study were 1) to investigate the effect of ROS on cardiac differentiation and the regulations of transcription factors in ESC differentiation cultures and 2) to investigate the effect of pro-inflammatory cytokines on the expression of cardiac structural genes and whether this effect is mediated through ROS signaling. METHODS: ESCs were differentiated using hanging drop method. Degree of cardiac differentiation was determined by the appearance of beating embryoid bodies (EBs) and by the expression of cardiac genes using real-time PCR and Western blot. Intracellular ROS level was examined by confocal imaging. RESULTS: H2O2-treated EBs were found to have enhanced cardiac differentiation in the long run as reflected by, firstly, an earlier appearance of beating EBs, and secondly, an upregulation in cardiac structural protein expression at both mRNA and protein levels. Also, ROS upregulated the expression of several cardiac-related transcription factors, and increased the post-translationally-activated transcription factors SRF and AP-1. IL-1ß, IL-10, IL-18 and TNF-α upregulated the expression of cardiac structural proteins and increased the ROS level in differentiating EBs. In addition, ROS scavenger reversed the cardiogenic effect of IL-10 and IL-18. CONCLUSIONS: These results demonstrated that ROS enhance cardiac differentiation of ESCs through upregulating the expression and activity of multiple cardiac-related transcription factors. IL-1ß, IL-10, IL-18 and TNF-α enhance cardiac differentiation and ROS may serve as the messenger in cardiogenic signaling from these cytokines.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Inflammation Mediators/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Animals , Cells, Cultured , Cytokines/biosynthesis , Cytokines/metabolism , Mice , Myocardial Infarction/pathology , Transcription Factors/physiology
2.
Biochem Pharmacol ; 73(9): 1330-9, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17250811

ABSTRACT

Recent clinical trials showed that estrogen usage in postmenopausal women did not affect coronary heart disease incidence, in contrast to several laboratory studies showing that estrogen decreased vascular reactivity. We speculated that, in some arteries, estrogen deficiency enhances endothelial function to compensate for the increased vascular smooth muscle reactivity. In this study, we examined the role of endothelium-derived vasoactive factors and the influence of in vivo estrogen and/or tamoxifen treatment on vascular reactivity of estrogen-deficient rats. Common carotid arteries were isolated from sham-operated (control), ovariectomized (Ovx), estrogen- or tamoxifen-treated Ovx rats, and Ovx rats co-treated with estrogen and tamoxifen. U46619 or phenylephrine induced similar contractions in endothelium-intact rings from all groups. Interestingly, removal of endothelium unmasked enhanced contractions in Ovx rats, which was prevented by estrogen, tamoxifen, or estrogen+tamoxifen treatment. Contractions to high K(+) were higher in both endothelium-intact and endothelium-denuded arteries from Ovx rats. Estrogen or tamoxifen treatment normalized high K(+)-induced contraction. A gap junction blocker, 18alpha-glycyrrhetinic acid, revealed enhanced contractions to U46619 in the absence or presence of l-NNA. Western blotting showed enhanced expressions of gap junctional connexin 43 in Ovx group. This study suggests that ovariectomy increases functional expression of gap junction-mediated endothelium-derived hyperpolarizing factor. Also, vascular effects of ovariectomy can be reversed by estrogen, tamoxifen or estrogen+tamoxifen treatment, suggesting that tamoxifen confers estrogenic effects in the vascular system.


Subject(s)
Carotid Arteries/drug effects , Endothelium, Vascular/drug effects , Estrogens/deficiency , Tamoxifen/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Carotid Arteries/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Endothelium, Vascular/physiology , Female , Gap Junctions , Hormones/pharmacology , Ovariectomy , Phenylephrine , Potassium/pharmacology , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...