Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
APL Bioeng ; 7(4): 046111, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37941766

ABSTRACT

Wearable thermoregulatory technologies have attracted widespread attention because of their potential for impacting individual physiological comfort and for reducing building energy consumption. Within this context, the study of materials and systems that can merge the advantageous characteristics of both active and passive operating modes has proven particularly attractive. Accordingly, our laboratory has drawn inspiration from the appearance-changing skin of Loliginidae (inshore squids) for the introduction of a unique class of dynamic thermoregulatory composite materials with outstanding figures of merit. Herein, we demonstrate a straightforward approach for experimentally controlling and computationally predicting the adaptive infrared properties of such bioinspired composites, thereby enabling the development and validation of robust structure-function relationships for the composites. Our findings may help unlock the potential of not only the described materials but also comparable systems for applications as varied as thermoregulatory wearables, food packaging, infrared camouflage, soft robotics, and biomedical sensing.

2.
Proc Natl Acad Sci U S A ; 117(52): 32891-32901, 2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33323484

ABSTRACT

Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.

3.
Nat Commun ; 10(1): 1947, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036806

ABSTRACT

Effective thermal management is critical for the operation of many modern technologies, such as electronic circuits, smart clothing, and building environment control systems. By leveraging the static infrared-reflecting design of the space blanket and drawing inspiration from the dynamic color-changing ability of squid skin, we have developed a composite material with tunable thermoregulatory properties. Our material demonstrates an on/off switching ratio of ~25 for the transmittance, regulates a heat flux of ~36 W/m2 with an estimated mechanical power input of ~3 W/m2, and features a dynamic environmental setpoint temperature window of ~8 °C. Moreover, the composite can manage one fourth of the metabolic heat flux expected for a sedentary individual and can also modulate localized changes in a wearer's body temperature by nearly 10-fold. Due to such functionality and associated figures of merit, our material may substantially reduce building energy consumption upon widespread deployment and adoption.


Subject(s)
Body Temperature Regulation/physiology , Animals , Body Temperature/physiology , Decapodiformes , Hot Temperature , Humans , Male , Skin Temperature/physiology , Temperature
4.
Adv Mater ; 28(38): 8405-8412, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27454809

ABSTRACT

Films from the cephalopod protein reflectin demonstrate multifaceted functionality as infrared camouflage coatings, proton transport media, and substrates for growth of neural stem cells. A detailed study of the in vitro formation, structural characteristics, and stimulus response of such films is presented. The reported observations hold implications for the design and development of advanced cephalopod-inspired functional materials.


Subject(s)
Cephalopoda , Animals , Neural Stem Cells , Proteins , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...