Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(2): 848-67, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24280225

ABSTRACT

The homologous hexameric AAA(+) proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.


Subject(s)
Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Binding Sites/genetics , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Endopeptidase Clp , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hot Temperature , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Scattering, Small Angle , Sequence Homology, Amino Acid , X-Ray Diffraction
2.
Cell ; 151(4): 778-793, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23141537

ABSTRACT

It is not understood how Hsp104, a hexameric AAA+ ATPase from yeast, disaggregates diverse structures, including stress-induced aggregates, prions, and α-synuclein conformers connected to Parkinson disease. Here, we establish that Hsp104 hexamers adapt different mechanisms of intersubunit collaboration to disaggregate stress-induced aggregates versus amyloid. To resolve disordered aggregates, Hsp104 subunits collaborate noncooperatively via probabilistic substrate binding and ATP hydrolysis. To disaggregate amyloid, several subunits cooperatively engage substrate and hydrolyze ATP. Importantly, Hsp104 variants with impaired intersubunit communication dissolve disordered aggregates, but not amyloid. Unexpectedly, prokaryotic ClpB subunits collaborate differently than Hsp104 and couple probabilistic substrate binding to cooperative ATP hydrolysis, which enhances disordered aggregate dissolution but sensitizes ClpB to inhibition and diminishes amyloid disaggregation. Finally, we establish that Hsp104 hexamers deploy more subunits to disaggregate Sup35 prion strains with more stable "cross-ß" cores. Thus, operational plasticity enables Hsp104 to robustly dissolve amyloid and nonamyloid clients, which impose distinct mechanical demands.


Subject(s)
Amyloid/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Animals , Endopeptidase Clp , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Humans , Parkinson Disease/metabolism , Prions/metabolism , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...