Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Protein Sci ; 30(1): 187-200, 2021 01.
Article in English | MEDLINE | ID: mdl-33070389

ABSTRACT

The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.


Subject(s)
COVID-19/genetics , Databases, Factual , Protein Interaction Mapping , Proteins/genetics , Animals , COVID-19/virology , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , User-Computer Interface
2.
Nucleic Acids Res ; 47(D1): D529-D541, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30476227

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the curation and archival storage of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2018 (build 3.4.164), BioGRID contains records for 1 598 688 biological interactions manually annotated from 55 809 publications for 71 species, as classified by an updated set of controlled vocabularies for experimental detection methods. BioGRID also houses records for >700 000 post-translational modification sites. BioGRID now captures chemical interaction data, including chemical-protein interactions for human drug targets drawn from the DrugBank database and manually curated bioactive compounds reported in the literature. A new dedicated aspect of BioGRID annotates genome-wide CRISPR/Cas9-based screens that report gene-phenotype and gene-gene relationships. An extension of the BioGRID resource called the Open Repository for CRISPR Screens (ORCS) database (https://orcs.thebiogrid.org) currently contains over 500 genome-wide screens carried out in human or mouse cell lines. All data in BioGRID is made freely available without restriction, is directly downloadable in standard formats and can be readily incorporated into existing applications via our web service platforms. BioGRID data are also freely distributed through partner model organism databases and meta-databases.


Subject(s)
Databases, Factual , Animals , CRISPR-Cas Systems , Data Curation , Drug Discovery , Genes , Humans , Mice , Protein Interaction Mapping
3.
J Med Chem ; 58(1): 130-46, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24867403

ABSTRACT

Polo-like kinase 4 (PLK4), a unique member of the polo-like kinase family of serine-threonine kinases, is a master regulator of centriole duplication that is important for maintaining genome integrity. Overexpression of PLK4 is found in several human cancers and is linked with a predisposition to tumorigenesis. Previous efforts to identify potent and efficacious PLK4 inhibitors resulted in the discovery of (E)-3-((1H-indazol-6-yl)methylene)indolin-2-ones, which are superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones reported herein. Optimization of this new cyclopropane-linked series was based on a computational model of a PLK4 X-ray structure and SAR attained from the analogous alkenelinked series. The racemic cyclopropane-linked compounds showed PLK4 affinity and antiproliferative activity comparable to their alkene-linked congeners with improved hysicochemical, ADME, and pharmacokinetic properties. Positive xenograft results from the MDA-MB-468 human breast cancer xenograft model for compound 18 support the investigation of PLK4 inhibitors as anticancer therapeutics. A PLK4 X-ray co-structure with racemate 18 revealed preferential binding of the 1R,2S enantiomer to the PLK4 kinase domain.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Spiro Compounds/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Indoles/chemistry , Indoles/pharmacokinetics , MCF-7 Cells , Mice , Models, Chemical , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Rats , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem ; 22(17): 4968-97, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25043312

ABSTRACT

TTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50=3.6nM) demonstrated good activity in cell based assay and selectivity against a panel of human kinases. A co-complex TTK X-ray crystal structure and results of a xenograft study with TTK inhibitors from this class are described.


Subject(s)
Amides/pharmacology , Benzeneacetamides/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Benzeneacetamides/chemical synthesis , Benzeneacetamides/chemistry , Cell Cycle Proteins/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
5.
J Med Chem ; 56(15): 6069-87, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23829549

ABSTRACT

The family of Polo-like kinases is important in the regulation of mitotic progression; this work keys on one member, namely Polo-like kinase 4 (PLK4). PLK4 has been identified as a candidate anticancer target which prompted a search for potent and selective inhibitors of PLK4. The body of the paper describes lead generation and optimization work which yielded nanomolar PLK4 inhibitors. Lead generation began with directed virtual screening, using a ligand-based focused library and a PLK4 homology model. Validated hits were used as starting points for the design and discovery of PLK4 inhibitors of novel structure, namely (E)-3-((1H-indazol-6-yl)methylene)indolin-2-ones. Computational models, based on a published X-ray structure (PLK4 kinase domain), were used to understand and optimize the in vitro activity of the series; potent antiproliferative activity was obtained. The kinase selectivity profile and cell cycle analysis of selected inhibitors are described. The results of a xenograft study with an optimized compound 50 (designated CFI-400437) support the potential of these novel PLK4 inhibitors for cancer therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Indazoles/chemical synthesis , Indoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Mice , Mice, SCID , Models, Molecular , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
6.
Methods Mol Biol ; 570: 175-85, 2009.
Article in English | MEDLINE | ID: mdl-19649592

ABSTRACT

Understanding protein-protein interactions is a key step in unravelling the roles proteins play in cellular function. The ability to analyse protein-protein interactions rapidly and economically is a powerful research tool. Using peptide SPOT arrays, peptides of known sequence can be synthesized directly in discrete spots on a cellulose membrane and assayed for an interaction with a protein of interest. Several hundred peptides can be synthesized on each cellulose membrane; therefore, this method is amenable to designing high-throughput peptide binding studies. SPOT arrays are particularly well suited for deducing peptidic binding motifs within proteins that are difficult to purify in sufficient quantities for traditional biochemical analyses, as well as for determining binding specificities and targets for proteins of undefined function. Peptide SPOT arrays have been used extensively to define protein-protein interaction surfaces. In this chapter, we will outline the steps involved in designing and probing a peptide SPOT array to identify peptide binding motifs for a protein of interest.


Subject(s)
Amino Acid Motifs , Protein Array Analysis/methods , Protein Interaction Domains and Motifs , Protein Interaction Mapping/methods , Animals , Humans , Peptides/analysis , Protein Binding , Protein Interaction Mapping/instrumentation
7.
Methods Mol Biol ; 570: 187-95, 2009.
Article in English | MEDLINE | ID: mdl-19649593

ABSTRACT

The human proteome is known to contain >500 protein kinases, which regulate almost all facets of cellular biology by the post-translational attachment of a phosphate moiety to serine, threonine, or tyrosine residues within a substrate protein. Most protein kinases remain poorly characterized and, as a result, current studies are directed toward defining their target substrates experimentally to gain a comprehensive view of the signaling proteins and pathways modulated by these kinases. Herein, we describe a rapid and convenient method for elucidating the consensus substrate motif for phosphorylation by a protein kinase using peptide SPOT arrays that are custom-synthesized on a cellulose membrane support. The definition of the target consensus motif provides an important starting point for the identification of physiologically relevant kinase substrates.


Subject(s)
Amino Acid Motifs , Protein Array Analysis/methods , Protein Kinases/metabolism , Animals , Enzyme Assays/methods , Humans , Models, Biological , Peptide Mapping/methods , Peptides/analysis , Peptides/chemical synthesis , Peptides/metabolism , Phosphorylation , Substrate Specificity
8.
FEBS Lett ; 581(1): 77-83, 2007 Jan 09.
Article in English | MEDLINE | ID: mdl-17174311

ABSTRACT

The family of polo like kinases (Plks) regulate cell cycle progression through key functional roles in mitosis. While the four mammalian family members, Plk1-4, share overlapping functions, each member possesses unique functions that may be dictated in part by their ability to phosphorylate different substrates. Numerous cellular substrates for Plk1, 2, and 3 have been characterized, but the protein targets for Plk4/Sak remain unknown. We have purified the kinase domain of Sak and demonstrated that it has robust kinase activity in vitro. Using in vitro kinase assays on peptide spots arrays, we determined the consensus phosphorylation motif for Sak to be yen-[Ile/Leu/Val]-Ser/Thr-phi-phi-X- yen/Pro (where phi denotes a large hydrophobic residue, yen is a charged residue dependent on the context of the surrounding sequence, and residues in brackets are unfavoured). This consensus phosphorylation motif differs from that of Plk1, and provides a basis for future studies to identify in vivo substrates of Sak.


Subject(s)
Peptides/chemistry , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/chemistry , Amino Acid Motifs , Animals , Mice , Peptides/metabolism , Phosphorylation , Protein Array Analysis , Protein Processing, Post-Translational/physiology , Protein Serine-Threonine Kinases/isolation & purification , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity
9.
Cell ; 115(1): 3-4, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-14531994

ABSTRACT

New work by Elia et al. in this issue of Cell reveals the molecular basis of phosphopeptide recognition by the polo domain and the domain's dual function to promote substrate recognition by targeting the kinase to subcellular structures and to autoregulate the adjacent protein kinase catalytic domain.


Subject(s)
Phosphopeptides/metabolism , Protein Kinases/metabolism , Amino Acid Motifs , Animals , Binding Sites , Cell Cycle Proteins , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Humans , Phosphopeptides/chemistry , Protein Kinases/chemistry , Protein Serine-Threonine Kinases , Protein Structure, Tertiary , Proto-Oncogene Proteins , Polo-Like Kinase 1
10.
Nat Struct Biol ; 9(10): 719-24, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12352953

ABSTRACT

The small family of polo-like kinases (Plks) includes Cdc5 from Saccharomyces cerevisiae, Plo1 from Schizosaccharomyces pombe, Polo from Drosophila melanogaster and the four mammalian genes Plk1, Prk/Fnk, Snk and Sak. These kinases control cell cycle progression through the regulation of centrosome maturation and separation, mitotic entry, metaphase to anaphase transition, mitotic exit and cytokinesis. Plks are characterized by an N-terminal Ser/Thr protein kinase domain and the presence of one or two C-terminal regions of similarity, termed the polo box motifs. These motifs have been demonstrated for Cdc5 and Plk1 to be required for mitotic progression and for subcellular localization to mitotic structures. Here we report the 2.0 A crystal structure of a novel domain composed of the polo box motif of murine Sak. The structure consists of a dimeric fold with a deep interfacial cleft and pocket, suggestive of a ligand-binding site. We show that this domain forms homodimers both in vitro and in vivo, and localizes to centrosomes and the cleavage furrow during cytokinesis. The requirement of the polo domain for Plk family function and the unique physical properties of the domain identify it as an attractive target for inhibitor design.


Subject(s)
Cell Cycle/physiology , Drosophila Proteins , Mitosis/physiology , Protein Serine-Threonine Kinases/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Crystallography, X-Ray , Dimerization , Green Fluorescent Proteins , Luminescent Proteins/genetics , Mice , Mitosis/genetics , Molecular Sequence Data , Precipitin Tests , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Sequence Alignment , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...