Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(8): e2218294120, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36787351

ABSTRACT

Chemical products, such as plastics, solvents, and fertilizers, are essential for supporting modern lifestyles. Yet, producing, using, and disposing of chemicals creates adverse environmental impacts which threaten the industry's license to operate. This study presents seven planet-compatible pathways toward 2050 employing demand-side and supply-side interventions with cumulative total investment costs of US$1.2-3.7 trillion. Resource efficiency and circularity interventions reduce global chemicals demand by 23 to 33% and are critical for mitigating risks associated with using fossil feedstocks and carbon capture and sequestration, and constraints on available biogenic and recyclate feedstocks. Replacing fossil feedstocks with biogenic/air-capture sources, shifting carbon destinations from the atmosphere to ground, and electrifying/decarbonizing energy supply for production technologies could enable net negative emissions of 0.5 GtCO2eq y-1 across non-ammonia chemicals, while still delivering essential chemical-based services to society.

2.
RSC Adv ; 11(45): 28189-28197, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480726

ABSTRACT

With the transfer of the electrochemical CO2-reduction from academic labs towards industrial application, one major factor is the increase in current density. This can be achieved via the usage of a gas diffusion electrode. It allows for electrochemical reactions at the three-phase boundary between gaseous CO2, liquid electrolyte and electrocatalyst. Thus, current densities in commercially relevant magnitudes of 200 mA cm-2 and beyond can be reached. However, when increasing the current density one faces a new set of challenges, unknown from low current experiments. Here, we address the issue of gas evolution causing a local increase in resistance and the impact on the operation of flow cells with gas diffusion electrodes. We set up a simple simulation model and compared the results with experiments on a real setup. As a result, the gas evolution's strong impact on current-, potential- and resistance-distributions along the flow axis can be described. Main consequence is that the positioning of the reference electrode has a significant effect on the locally measured IR-drop and thus on the measured or applied potential. Therefore, data from different setups must be compared with great care, especially with respect to the potentials, on which the cell is operated.

3.
Angew Chem Int Ed Engl ; 58(23): 7697-7701, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-30938006

ABSTRACT

A series of copolymers comprising a terpyridine ligand and various functional groups were synthesized toward integrating a Co-based molecular CO2 reduction catalyst. Using porous metal oxide electrodes designed to host macromolecules, the Co-coordinated polymers were readily immobilized via phosphonate anchoring groups. Within the polymeric matrix, the outer coordination sphere of the Co terpyridine catalyst was engineered using hydrophobic functional moieties to improve CO2 reduction selectivity in the presence of water. Electrochemical and photoelectrochemical CO2 reduction were demonstrated with the polymer-immobilized hybrid cathodes, with a CO:H2 product ratio of up to 6:1 compared to 2:1 for a corresponding "monomeric" Co terpyridine catalyst. This versatile platform of polymer design demonstrates promise in controlling the outer-sphere environment of synthetic molecular catalysts, analogous to CO2 reductases.

4.
Chem Rev ; 119(4): 2752-2875, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30767519

ABSTRACT

The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.

5.
Chem Sci ; 8(7): 5172-5180, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28970903

ABSTRACT

The development of photoelectrodes capable of light-driven hydrogen evolution from water is an important approach for the storage of solar energy in the form of a chemical energy carrier. However, molecular catalyst-based photocathodes remain scarcely reported and typically suffer from low efficiencies and/or stabilities due to inadequate strategies for interfacing the molecular component with the light-harvesting material. In this study, we report the straightforward preparation of a p-silicon|mesoporous titania|molecular catalyst photocathode assembly that is active towards proton reduction in aqueous media with an onset potential of +0.4 V vs. RHE. The mesoporous TiO2 scaffold acts as an electron shuttle between the silicon and the catalyst, while also stabilising the silicon from passivation and enabling a high loading of molecular catalysts (>30 nmol (geometrical cm)-2). When a Ni bis(diphosphine)-based catalyst is anchored on the surface of the electrode, a high turnover number of ∼1 × 103 was obtained from photoelectrolysis under UV-filtered simulated solar irradiation at 1 Sun after 24 h at pH 4.5. Notwithstanding its aptitude for molecular catalyst immobilisation, the p-Si|TiO2 photoelectrode showed great versatility towards different catalysts and pH conditions, with photoelectrocatalytic H2 generation also being achieved with platinum and a hydrogenase as catalyst, highlighting the flexible platform it represents for many potential reductive catalysis transformations.

6.
Angew Chem Int Ed Engl ; 55(12): 3952-7, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26890469

ABSTRACT

A freestanding H2-evolution electrode consisting of a copolymer-embedded cobaloxime integrated into a multiwall carbon nanotube matrix by π-π interactions is reported. This electrode is straightforward to assemble and displays high activity towards hydrogen evolution in near-neutral pH solution under inert and aerobic conditions, with a cobalt-based turnover number (TON(Co)) of up to 420. An analogous electrode with a monomeric cobaloxime showed less activity with a TON(Co) of only 80. These results suggest that, in addition to the high surface area of the porous network of the buckypaper, the polymeric scaffold provides a stabilizing environment to the catalyst, leading to further enhancement in catalytic performance. We have therefore established that the use of a multifunctional copolymeric architecture is a viable strategy to enhance the performance of molecular electrocatalysts.


Subject(s)
Electrodes , Nanotubes, Carbon , Organometallic Compounds/chemistry , Polymers/chemistry , Hydrogen/chemistry , Microscopy, Electron, Scanning
7.
Dalton Trans ; 44(44): 19090-6, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26505462

ABSTRACT

The novel heterometallic polyoxotitanate cage [Ti18MnO30(OEt)20(MnPhen)3] (1), obtained by solvothermal reaction of Ti(OEt)4 with Mn(AcO)3·(H2O)2 and 1,10-phenanthroline (Phen) in EtOH, has a C3 symmetric core structure containing an interstitial tetrahedral Mn(II) ion and is surrounded by three Mn(II)(Phen) fragments. The molecular structure is retained in thin film electrodes of 1 deposited by solution drop-casting onto fluorinated tin oxide (FTO). Both solid state and solution phase electrochemical measurements show dual redox couples, consistent with the two distinct Mn coordination environments in the cage structure. Sintering of 1 in air at 600 °C produces a black crystalline solid which consists of Mn-doped TiO2 (mainly in the rutile phase) together with α-Mn2O3. Such a composite semiconductor has an optical band gap of ca. 1.80 eV, similar to that of α-Mn2O3.

SELECTION OF CITATIONS
SEARCH DETAIL
...