Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Pers Med ; 12(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743800

ABSTRACT

Myosteatosis is the infiltration of fat in skeletal muscle during the onset of sarcopenia. The quantification of intramuscular adipose tissue (IMAT) can be a feasible imaging modality for the clinical assessment of myosteatosis, important for the early identification of sarcopenia patients and timely intervention decisions. There is currently no standardized method or consensus for such an application. The aim of this study was to develop a method for the detection and analysis of IMAT in clinical HR-pQCT images of the distal tibia to evaluate skeletal muscle during the ageing process, validated with animal and clinical experimentation. A pre-clinical model of ovariectomized (OVX) rats with known intramuscular fat infiltration was used, where gastrocnemii were scanned by micro-computed tomography (micro-CT) at an 8.4 µm isotropic voxel size, and the images were analyzed using our modified IMAT analysis protocol. IMAT, muscle density (MD), and muscle volume (MV) were compared with SHAM controls validated with Oil-red-O (ORO) staining. Furthermore, the segmentation and IMAT evaluation method was applied to 30 human subjects at ages from 18 to 81 (mean = 47.3 ± 19.2). Muscle-related parameters were analyzed with functional outcomes. In the animal model, the micro-CT adipose tissue-related parameter of IMAT% segmented at −600 HU to 100 HU was shown to strongly associate with the ORO-positively stained area (r = 0.898, p = 0.002). For the human subjects, at an adjusted threshold of −600 to −20 HU, moderate positive correlations were found between MV and MD (r = 0.642, p < 0.001), and between MV and IMAT volume (r = 0.618, p < 0.01). Moderate negative correlations were detected between MD and IMAT% (r = −0.640, p < 0.001). Strong and moderate associations were found between age and MD (r = −0.763, p < 0.01), and age and IMAT (r = 0.559, p < 0.01). There was also a strong correlation between IMAT% and chair rise time (r = 0.671, p < 0.01). The proposed HR-pQCT evaluation protocol for intramuscular adipose-tissue produced MD and IMAT results that were associated with age and physical performance measures, and were of good predictive value for the progression of myosteatosis or sarcopenia. The protocol was also validated on animal skeletal muscle samples that showed a good representation of histological lipid content with positive correlations, further supporting the clinical application for the rapid evaluation of muscle quality and objective quantification of skeletal muscle at the peripheral for sarcopenia assessment.

2.
Sci Rep ; 11(1): 14650, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282186

ABSTRACT

The objective of this study was to investigate the prognostic factors predicting the ambulation recovery of fragility hip fracture patients. 2286 fragility hip fracture patients were collected from the Fragility Fracture Registry in Hong Kong. Predictive factors of ambulation deterioration including age, gender, pre-operation American Society of Anesthesiologists grade, pre-fracture mobility, delay to surgery, length of stay, fracture type, type of surgery, discharge destination and complications were identified. Patients with outdoor unassisted and outdoor with aids ambulatory function before fracture had 3- and 1.5-times increased risk of mobility deterioration, respectively (Odds Ratio (OR) = 2.556 and 1.480, 95% Confidence Interval (CI) 2.101-3.111 and 1.246-1.757, both p < 0.001). Patients living in old age homes had almost 1.4 times increased risk of deterioration when compared to those that lived in their homes (OR = 1.363, 95% CI 1.147-1.619, p < 0.001). The risk also increased for every 10 years of age (OR = 1.831, 95% CI 1.607-2.086, p < 0.001). Patients in the higher risk ASA group shows a decreased risk of ambulation deterioration compared to those in lower risk ASA group (OR = 0.831, 95% CI 0.698-0.988, p = 0.038). Patients who suffered from complications after surgery did not increased risk of mobility decline at 1-year post-surgery. Delayed surgery over 48 h, delayed discharge (> 14 days), early discharge (less than 6 days), and length of stay also did not increased risk of mobility decline. Male patients performed worse in terms of their mobility function after surgery compared to female patients (OR = 1.195, 95% CI 1.070-1.335, p = 0.002). This study identified that better premorbid good function, discharge to old age homes especially newly institutionalized patients, increased age, lower ASA score, and male patients, correlate with mobility deterioration at 1-year post-surgery. With the aging population and development of FLS, prompt identification of at-risk patients should be performed for prevention of deterioration.


Subject(s)
Hip Fractures/epidemiology , Mobility Limitation , Walking/statistics & numerical data , Age Factors , Aged , Aged, 80 and over , Asian People/statistics & numerical data , Female , Hip Fractures/rehabilitation , Hong Kong/epidemiology , Humans , Male , Prognosis , Registries , Risk Factors , Time Factors , Walking/physiology
3.
Bone Joint Res ; 10(1): 41-50, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33448865

ABSTRACT

AIMS: Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. METHODS: A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture. RESULTS: All rats achieved healing, and x-ray relative radiopacity for OVX-VT was significantly higher compared to OVX at week 2. Martius Scarlet Blue (MSB) staining revealed a significant decrease of fibrin content in the callus in OVX-VT compared with OVX on day 3 (p = 0.020). Mean tPA from muscle was significantly higher for OVX-VT compared to OVX (p = 0.020) on day 3. Mechanical testing revealed the mean energy to failure was significantly higher for OVX-VT at 37.6 N mm (SD 8.4) and 71.9 N mm (SD 30.7) compared with OVX at 5.76 N mm (SD 7.1) (p = 0.010) and 17.7 N mm (SD 11.5) (p = 0.030) at week 2 and week 6, respectively. CONCLUSION: Metaphyseal fracture healing is enhanced by LMHFV, and one of the important molecular pathways it acts on is fibrinolysis. LMHFV is a promising intervention for osteoporotic metaphyseal fracture healing. The improved mechanical properties, acceleration of fracture healing, and safety justify its role into translation to future clinical studies. Cite this article: Bone Joint Res 2021;10(1):41-50.

4.
J Cachexia Sarcopenia Muscle ; 11(2): 564-577, 2020 04.
Article in English | MEDLINE | ID: mdl-31994349

ABSTRACT

BACKGROUND: Sarcopenia is an aging-induced deterioration of skeletal muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to improve muscle functions and ß-hydroxy-ß-methylbutyrate (HMB) to increase muscle mass and strength. Muscle-derived stem cells (MDSCs) are progenitor cells important for muscle regeneration. We hypothesized that LMHFV and HMB could retard sarcopenia by reducing fat infiltration through inhibiting adipogenesis in MDSCs. METHODS: Senescence-accelerated mouse P8 male mice were randomized into control (CTL), HMB, LMHFV (VIB), and combined (COM) groups. Interventions started at age of month 7 and assessed at 1, 2, and 3 months post-intervention by densitometry, histology, and functional tests. In vitro, MDSCs isolated from gastrocnemius of senescence-accelerated mouse P8 mice were characterized, randomized into CTL, VIB, HMB, and COM groups, and assessed by oil red O staining, mRNA, and protein expression. RESULTS: At 2 months post-intervention, percentage lean mass of HMB, VIB, and COM groups were significantly higher than CTL group. Twitch, tetanic, and specific tetanic forces of COM group were higher, while specific twitch force of both VIB and COM groups were higher. Grip strength of HMB, VIB, and COM groups were higher. Histologically, both VIB and COM groups presented lower oil red O area than CTL group. Type I muscle fibre in CTL group was higher than HMB, VIB, and COM groups. MDSC were detected in situ by immunofluorescence stain with stem cell antigen-1 signals confirmed with higher ß-catenin expression in the COM group. The observations were also confirmed in vitro, MDSCs in the HMB, VIB, and COM groups presented lower adipogenesis vs. the CTL group. ß-Catenin mRNA and protein expressions were lower in the CTL group while their relationship was further validated through ß-catenin knock-down approach. CONCLUSIONS: Our results showed that combined LMHFV and HMB interventions enhanced muscle strength and decreased percentage fat mass and intramuscular fat infiltration as compared with either treatment alone. Additive effect of LMHFV and HMB was demonstrated in ß-catenin expression than either treatment in MDSCs and altered cell fate from adipogenesis to myogenesis, leading to inhibition of intramuscular lipid accumulation. Wnt/ß-catenin signalling pathway was found to be the predominant regulatory mechanism through which LMHFV and HMB combined treatment suppressed MDSCs adipogenesis.


Subject(s)
Adipogenesis/physiology , Sarcopenia/physiopathology , Valerates/metabolism , Animals , Cell Differentiation , Disease Models, Animal , Humans , Injections, Intramuscular , Male , Mice
5.
J Orthop Surg Res ; 13(1): 235, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30217215

ABSTRACT

BACKGROUND: The purpose of this registry-based retrospective study was to investigate the risk factors related to one-year mortality in displaced intracapsular fragility hip fracture patients. METHODS: Patients were screened from the Fragility Fracture Registry. Inclusion criterion was displaced intracapsular hip fracture patients with atypical or pathological fractures excluded. One-year mortality was investigated against risk factors including age, gender, past medical history, pre-fracture mobility (PFM), pre-operation ASA grade, delayed surgery over 48 h, post-surgical complications, and length of stay at acute orthopedic ward (LOS). RESULTS: A total of 1050 patients were included for further analysis. Gross one-year mortality was 14.9%. One-year mortality was significantly higher in patients who received non-operative treatment and those who received surgery but delayed over 48 h after admission (both p <  0.001). Male gender (OR = 2.708), advanced age (OR = 1.359), higher risk ASA grades (III to V) (OR = 1.990), past history of gastrointestinal disease (OR = 1.671), and renal impairment (OR = 1.984) were related to higher one-year mortality. The mortality of patients in PFM grade 3 and LOS group 3 was significantly higher (OR = 2.240 and 1.722, respectively). CONCLUSIONS: Higher age, male gender, past gastrointestinal disease and renal impairment, ASA grade over 3, indoor confined pre-fracture ambulatory, and stay at hospital over 15 days were risk factors related to higher one-year mortality in surgically treated displaced intracapsular hip fracture patients. A multi-disciplinary approach is advised to patients identified with these risks factors and co-managed by orthopedic surgeons, geriatricians, and fracture liaison nurses.


Subject(s)
Hip Fractures/mortality , Intra-Articular Fractures/mortality , Osteoporotic Fractures/mortality , Aged , Aged, 80 and over , Asian People , Female , Hong Kong , Humans , Joint Capsule/injuries , Male , Middle Aged , Registries , Retrospective Studies , Risk Factors
6.
J Rehabil Med ; 50(3): 285-291, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29260234

ABSTRACT

OBJECTIVE: To investigate the effectiveness and cost of an 18-month multi-disciplinary Comprehensive Fragility Fracture Management Program (CFFMP) for fragility hip fracture patients. DESIGN: Prospective cohort study. PATIENTS: Elderly patients with hip fracture were recruited at their first postoperative follow-up in 2 district hospitals. The intervention group comprised patients from the hospital undergoing CFFMP, and the control group comprised patients from another hospital undergoing conventional care. CFFMP provided geri-orthopaedic co-management, physician consultations, group-exercise and vibration-therapy. Timed-up-and-go test (TUG), Elderly Mobility Scale (EMS), Berg Balance Scale (BBS) and fall risk screening (FS) were used to assess functional performance. Incidences of falls and secondary fractures, the cost of the programme and related healthcare resources were recorded. RESULTS: A total of 76 patients were included in the intervention group (mean age 77.9 years ((standard deviation; SD) 6.1) ) and 77 in the control group (79.9 (SD 7.2)), respectively. The re-fracture rate in the control group (10.39%) was significantly higher than in the intervention group (1.32%) (p = 0.034). The intervention group improved significantly in TUG, EMS and FS after a 1-year programme. The overall healthcare costs per patient in the intervention and control groups were US$22,450 and US$25,313, respectively. CONCLUSION: Multi-disciplinary CFFMP is effective, with reduced overall cost, reduced length of hospital stay and reduced secondary fracture rate. The rehabilitation community service favours rehabilitation and improved quality of life of hip fracture patients.


Subject(s)
Accidental Falls/prevention & control , Hip Fractures/rehabilitation , Physical Therapy Modalities/standards , Quality of Life/psychology , Aged , Cohort Studies , Female , Humans , Male , Prospective Studies
7.
Sci Rep ; 7(1): 11631, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912573

ABSTRACT

Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.


Subject(s)
Diabetic Foot/metabolism , Diabetic Foot/pathology , Glucose Transporter Type 4/genetics , Regional Blood Flow , Vibration , Wound Healing , Animals , Biomarkers , Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Foot/diagnostic imaging , Diabetic Foot/etiology , Disease Models, Animal , Gene Expression , Glucose Transporter Type 4/metabolism , Immunohistochemistry , Rats , Ultrasonography, Doppler, Color
8.
Exp Gerontol ; 97: 1-8, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28711604

ABSTRACT

Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia.


Subject(s)
Aging , Disease Models, Animal , Fracture Healing , Osteoporotic Fractures/pathology , Sarcopenia/pathology , Animals , Bony Callus/diagnostic imaging , Bony Callus/pathology , Female , Femoral Fractures/complications , Femoral Fractures/pathology , Fractures, Closed/complications , Fractures, Closed/pathology , Imaging, Three-Dimensional , Mice , Mice, Mutant Strains , Osteoporosis/pathology , X-Ray Microtomography
9.
Exp Anim ; 66(3): 259-269, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28413186

ABSTRACT

Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.


Subject(s)
Blood Circulation , C-Reactive Protein/metabolism , Cell Proliferation/physiology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Foot/metabolism , Diabetic Foot/physiopathology , Disease Models, Animal , Wound Healing , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Foot/pathology , Female , Rats, Wistar , Streptozocin , Time Factors
10.
J Orthop Translat ; 10: 94-101, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29662761

ABSTRACT

Ageing is accompanied by chronic inflammatory responses due to elevated circulatory inflammatory cytokine production. Several inflammatory cytokines have been shown to be responsible for a decrease in muscle mass. However, little is known about the possible relationship between inflammation and sarcopaenia. This review aims to summarise the existing evidence about inflammation and sarcopaenia. Sarcopaenia is defined as an age-related decrease of muscle mass and/or muscle strength; it is caused by multiple factors, such as skeletal muscle atrophy, neuromuscular junction degeneration, hormone imbalance, cytokine imbalance, protein synthesis and proteolysis. Several inflammatory cytokines have been considered to promote muscle loss; C-reactive protein levels are significantly upregulated in sarcopaenia and sarcopenic obesity, and high levels of interleukin-6 are associated with reduced muscle mass and muscle strength (the administration of interleukin-6 could lead to a reduction in muscle mass). Up-regulation of tumour necrosis factor-α expression is also related to the development of sarcopaenia. Signalling pathways, such as protein kinase B/mammalian target of rapamycin, Janus kinase/signal transducer and activator of transcription-5 and signal transducer and activator of transcription 3 signalling, involved in muscle metabolism are regulated by insulin-like growth factor-1, tumour necrosis factor-α and interleukin-6 respectively. In conclusion, the inflammatory cytokines produced during chronic inflammation due to ageing, may influence their respective related pathways, thus leading to age-related muscle deterioration. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This review can provide more information for sarcopaenia medicine research in terms of anti-inflammation therapy.

11.
J Orthop Translat ; 9: 52-59, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29662799

ABSTRACT

Ultrasound is an inaudible form of acoustic sound wave at 20 kHz or above that is widely used in the medical field with applications including medical imaging and therapeutic stimulation. In therapeutic ultrasound, low-intensity pulsed ultrasound (LIPUS) is the most widely used and studied form that generally uses acoustic waves at an intensity of 30 mW/cm2, with 200 ms pulses and 1.5 MHz. In orthopaedic applications, it is used as a biophysical stimulus for musculoskeletal tissue repair to enhance tissue regeneration. LIPUS has been shown to enhance fracture healing by shortening the time to heal and reestablishment of mechanical properties through enhancing different phases of the healing process, including the inflammatory phase, callus formation, and callus remodelling phase. Reports from in vitro studies reveal insights in the mechanism through which acoustic stimulations activate cell surface integrins that, in turn, activate various mechanical transduction pathways including FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), PI3K, and Akt. It is then followed by the production of cyclooxygenase 2 and prostaglandin E2 to stimulate further downstream angiogenic, osteogenic, and chondrogenic cytokines, explaining the different enhancements observed in animal and clinical studies. Furthermore, LIPUS has also been shown to have remarkable effects on mesenchymal stem cells (MSCs) in musculoskeletal injuries and tissue regeneration. The recruitment of MSCs to injury sites by LIPUS requires the SDF-1 (stromal cell derived factor-1)/CXCR-4 signalling axis. MSCs would then differentiate differently, and this is regulated by the presence of different cytokines, which determines their fates. Other musculoskeletal applications including bone-tendon junction healing, and distraction osteogenesis are also explored, and the results are promising. However, the use of LIPUS is controversial in treating osteoporosis, with negative findings in clinical settings, which may be attributable to the absence of an injury entry point for the acoustic signal to propagate, strong attenuation effect of cortical bone and the insufficient intensity for penetration, whereas in some animal studies it has proven effective.

12.
BMJ ; 355: i5351, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27797787

ABSTRACT

OBJECTIVE:  To determine whether low intensity pulsed ultrasound (LIPUS), compared with sham treatment, accelerates functional recovery and radiographic healing in patients with operatively managed tibial fractures. DESIGN:  A concealed, randomized, blinded, sham controlled clinical trial with a parallel group design of 501 patients, enrolled between October 2008 and September 2012, and followed for one year. SETTING:  43 North American academic trauma centers. PARTICIPANTS:  Skeletally mature men or women with an open or closed tibial fracture amenable to intramedullary nail fixation. Exclusions comprised pilon fractures, tibial shaft fractures that extended into the joint and required reduction, pathological fractures, bilateral tibial fractures, segmental fractures, spiral fractures >7.5 cm in length, concomitant injuries that were likely to impair function for at least as long as the patient's tibial fracture, and tibial fractures that showed <25% cortical contact and >1 cm gap after surgical fixation. 3105 consecutive patients who underwent intramedullary nailing for tibial fracture were assessed, 599 were eligible and 501 provided informed consent and were enrolled. INTERVENTIONS:  Patients were allocated centrally to self administer daily LIPUS (n=250) or use a sham device (n=251) until their tibial fracture showed radiographic healing or until one year after intramedullary fixation. MAIN OUTCOME MEASURES:  Primary registry specified outcome was time to radiographic healing within one year of fixation; secondary outcome was rate of non-union. Additional protocol specified outcomes included short form-36 (SF-36) physical component summary (PCS) scores, return to work, return to household activities, return to ≥80% of function before injury, return to leisure activities, time to full weight bearing, scores on the health utilities index (mark 3), and adverse events related to the device. RESULTS:  SF-36 PCS data were acquired from 481/501 (96%) patients, for whom we had 2303/2886 (80%) observations, and radiographic healing data were acquired from 482/501 (96%) patients, of whom 82 were censored. Results showed no impact on SF-36 PCS scores between LIPUS and control groups (mean difference 0.55, 95% confidence interval -0.75 to 1.84; P=0.41) or for the interaction between time and treatment (P=0.30); minimal important difference is 3-5 points) or in other functional measures. There was also no difference in time to radiographic healing (hazard ratio 1.07, 95% confidence interval 0.86 to 1.34; P=0.55). There were no differences in safety outcomes between treatment groups. Patient compliance was moderate; 73% of patients administered ≥50% of all recommended treatments. CONCLUSIONS:  Postoperative use of LIPUS after tibial fracture fixation does not accelerate radiographic healing and fails to improve functional recovery.Study registration ClinicalTrialGov Identifier: NCT00667849.


Subject(s)
Tibial Fractures/therapy , Ultrasonic Therapy/methods , Adult , Female , Fracture Fixation, Intramedullary/methods , Humans , Male , Single-Blind Method , Tibial Fractures/surgery , Treatment Outcome , Ultrasonic Waves
13.
Sci Rep ; 6: 34185, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27670149

ABSTRACT

We aimed to determine whether loss of volumetric bone mineral density (vBMD) and deterioration of microarchitecture imaged by high-resolution peripheral quantitative computed tomography at the distal radius/tibia provided additional information in fracture discrimination in postmenopausal women with recent hip fracture. This case-control study involved 24 postmenopausal Chinese women with unilateral femoral neck fracture (average [SD] age: 79.6[5.6]) and 24 age-matched women without any history of fracture. Each SD decrease in T-score at femoral neck (FN) was associated with a higher fracture risk (odds ratio: 6.905, p = 0.001). At the distal radius, fracture women had significantly lower total vBMD (-17.5%), fewer (-20.3%) and more unevenly spaced (81.4%) trabeculae, and thinner cortices (-14.0%) (all p < 0.05). At the distal tibia, vBMD was on average -4.7% (cortical) to -25.4% (total) lower, trabecular microarchitecture was on average -19.8% (number) to 102% (inhomogeneity) inferior, cortices were thinner (-21.1%) and more porous (18.2%) (all p < 0.05). Adding parameters of vBMD and microarchitecture in multivariate models did not offer additional discriminative capacity of fracture status compared with using T-score at FN. In old postmenopausal women with already excessive loss of bone mass, measuring bone microarchitecture may provide limited added value to improve identification of risk of femoral neck fracture.

14.
Injury ; 47 Suppl 2: S58-65, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27338229

ABSTRACT

The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no statistically significant differences were found between the three groups (p = 0.08). Histology revealed a good biocompatibility without inflammatory reaction for the HA- and HA/col-1 implants with a higher fragmentation of the HA-implant compared to the HA/col-1 biomaterial and formation of new bone in the region between the biomaterial fragments by osteoblasts. Fragmentation was shown by transmission electron microscopy to be caused by multinuclear osteoclast-like cells with degradation of the implant via intracellular incorporation of degraded implant material particles. In conclusion, both nanoparticulate HA with and without collagen type-1 showed better new bone formation compared to untreated drill hole defects in metaphyseal regions of this osteoporotic Chinese mountain goat model with good biocompatibility.


Subject(s)
Bone Regeneration/physiology , Cervical Vertebrae/pathology , Collagen Type I/pharmacology , Durapatite/pharmacology , Ilium/pathology , Osteoporosis/pathology , Ruminants , Animals , Biocompatible Materials , Collagen Type I/metabolism , Disease Models, Animal , Durapatite/metabolism , Female , Osteoblasts , Reproducibility of Results
15.
Injury ; 47 Suppl 1: S39-42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26768290

ABSTRACT

Osteoporotic fracture is known to have impaired healing capacity and therefore takes longer time to heal, as compared with younger one. The mechanism of impaired osteoporotic fracture healing is multifactorial, where lower responsiveness to mechanical loading is generally believed to be one factor, yet not absolutely confirmed. In recent years, low intensity pulsed ultrasound (LIPUS) is demonstrated to have good efficacy in treating normal fracture healing, as proven by many randomized controlled trials, as well as in vitro and animal evidences. The effects of LIPUS on osteoporotic fracture healing was also validated in an animal study, which revealed that osteoporotic fractured bone of SD rats showed radiologically and biomechanically comparable responses to LIPUS as age-matched normal fracture healing, in terms of callus width, bridging rate, bone volume fraction, and stiffness etc. Gene expression profiling also confirmed that osteoporotic fractured bone responded to LIPUS very well by upregulating Col1 and BMP2 (osteogenesis) at early phase, VEGF (angiogenesis) at middle phase and RANKL (remodeling) at late phase. These confirm that osteoporotic bones respond well to LIPUS as good as normal bone. These findings may be associated with estrogen receptors (ERs), as estrogen depletion is sensed and relayed by ERs and ERs also function as mechano-sensors. A previous study observed a delayed ERs expression pattern in fracture callus of OVX rats, as compared with SHAM rats, which correlated well with the expression pattern of BMP-2 (callus formation-related gene). Hence, the responses of osteoporotic fractured bone to LIPUS may be related to the local ERs expression at fracture callus that needs further experiments to validate.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bony Callus/pathology , Fracture Healing , Osteoporotic Fractures/pathology , Animals , Biomarkers/metabolism , Bone Morphogenetic Protein 2/genetics , Bony Callus/blood supply , Disease Models, Animal , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation , Humans , Osteogenesis/physiology , Osteoporotic Fractures/diagnostic imaging , Ovariectomy , RANK Ligand/genetics , RANK Ligand/metabolism , Rats , Rats, Sprague-Dawley , Ultrasonography
16.
Rejuvenation Res ; 19(4): 293-302, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26608404

ABSTRACT

Sarcopenia-related falls and fall-related injuries in community-dwelling elderly people garnered more and more interest in recent years. Low-magnitude high-frequency vibration (LMHFV) was proven beneficial to musculoskeletal system and recommended for sarcopenia treatment. This study aimed to evaluate the effects of LMHFV on the sarcopenic animals and explore the mechanism of the stimulatory effects. Senescence-accelerated mouse P8 (SAMP8) mice at month 6 were randomized into control (Ctrl) and vibration (Vib) groups and the mice in the Vib group were given LMHFV (0.3 g, 20 min/day, 5 days/week) treatment. At months 0, 1, 2, 3, and 4 post-treatment, muscle mass, structure, and function were assessed. The potential proliferation capacity of the muscle was also evaluated by investigating satellite cells (SCs) pool and serum myostatin expression. At late stage, the mice in the Vib group showed higher muscle strength (month 4, p = 0.028). Generally, contractibility was significantly improved by LMHFV (contraction time [CT], p = 0.000; half-relaxation time [RT50], p = 0.000). Enlarged cross-sectional area of fiber type IIA was observed in the Vib group when compared with Ctrl group (p = 0.000). No significant difference of muscle mass was observed. The promotive effect of LMHFV on myoregeneration was reflected by suppressed SC pool reduction (month 3, p = 0.000; month 4, p = 0.000) and low myostatin expression (p = 0.052). LMHFV significantly improved the structural and functional outcomes of the skeletal muscle, hence retarding the progress of sarcopenia in SAMP8. It would be a good recommendation for prevention of the diseases related to skeletal muscle atrophy.


Subject(s)
Aging , Muscle Contraction , Muscle Strength , Muscle, Skeletal/physiopathology , Sarcopenia/prevention & control , Vibration/therapeutic use , Age Factors , Animals , Cell Proliferation , Disease Models, Animal , Male , Mice , Microfilament Proteins , Muscle Development , Muscle Fatigue , Muscle Proteins/blood , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Sarcopenia/blood , Sarcopenia/pathology , Sarcopenia/physiopathology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Time Factors
17.
J Orthop Translat ; 5: 72-80, 2016 Apr.
Article in English | MEDLINE | ID: mdl-30035077

ABSTRACT

BACKGROUND/OBJECTIVE: Surgical technology has advanced rapidly with the introduction of robot technology. Apart from mechanical and electronic elements, housing design is an essential component that must be thoughtfully considered, bearing in mind the general requirements for medical devices used in operating theatres. The aim of this study was to design a modern and safe housing for a surgical robotic system for orthopaedic applications in Hong Kong that would meet the general requirements for obtaining local regulatory body approval. METHODS: Based on the general requirements for Class II Medical Devices, industrial product designers worked in close collaboration with a robot research team formed by engineers and orthopaedic surgeons to design a modern and safe housing for the HybriDot ® Surgical Robotic System that performs computer-assisted surgery. RESULTS: The design received local regulatory body approval for its application in operating theatres and was approved for orthopaedic surgery in Hong Kong after fulfilling the general requirements for safety, accuracy, movability and operability. CONCLUSION: This project demonstrated a good model of multidisciplinary R&D of surgical robotics led by orthopaedic surgeons, in collaboration with mechanical and electronic engineers and industrial designers.

18.
Exp Anim ; 64(4): 425-33, 2015.
Article in English | MEDLINE | ID: mdl-26193895

ABSTRACT

Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study.


Subject(s)
Aging/pathology , Aging/physiology , Disease Models, Animal , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Sarcopenia/pathology , Sarcopenia/physiopathology , Animals , In Vitro Techniques , Male , Muscle Contraction , Muscle Fibers, Skeletal/classification , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Time Factors
19.
Am J Sports Med ; 43(6): 1413-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25825378

ABSTRACT

BACKGROUND: Surgical repair around the bone-tendon insertion (BTI) may involve bone-to-bone (BB), bone-to-tendon (BT), or tendon-to-tendon (TT) reattachment with varying healing outcome. HYPOTHESIS: The repair of Achilles tendon-calcaneus (ATC) by reattachment of homogeneous tissue (BB or TT) would heal faster, with respect to tensile properties at the healing complex, than those of reattachment of heterogeneous tissues (BT) over time. STUDY DESIGN: Controlled laboratory study. METHODS: Forty-seven adolescent male Chinese goats were divided into BB, BT, and TT groups. Osteotomy of the calcaneus, reattachment of Achilles tendon to the calcaneus after removal of the insertion, and tenotomy of the Achilles tendon were performed to simulate BB, BT, and TT repair, respectively. The ATC healing complexes were harvested at 6, 12, or 24 weeks postoperatively. Mechanical and morphological properties of the healing ATC complexes were assessed by tensile testing and qualitative histology, respectively. The contralateral intact ATC complex was used as the control. RESULTS: Failure load of BT was 33.4% lower than that of TT (P = .0243) at week 12. Ultimate strength of BT was 50.2% and 45.3% lower than that of TT at weeks 12 (P = .0002) and 24 (P = .0001), respectively. Tissue morphological characteristics of the BB and TT groups showed faster remodeling. The BT group showed limited regeneration of fibrocartilage zone and excessive formation of fibrous tissue at the healing interface. CONCLUSION: BTI repair between homogeneous tissues (BB and TT healing) showed better healing quality with respect to mechanical and histological assessments than did healing between heterogeneous tissues (BT healing). CLINICAL RELEVANCE: Anatomic reconstruction of ATC complex injury may be a primary concern when selecting the proper surgical approach. However, it is recommended to select fracture fixation (BB) or tendon repair (TT) instead of bone-tendon reattachment (BT) if possible to ensure better outcome at the healing interface.


Subject(s)
Achilles Tendon/physiology , Calcaneus/physiology , Tendon Injuries/physiopathology , Wound Healing/physiology , Achilles Tendon/anatomy & histology , Achilles Tendon/injuries , Animals , Calcaneus/surgery , Fibrocartilage/physiology , Fibrocartilage/surgery , Goats , Male , Models, Animal , Orthopedic Procedures/methods , Osteotomy/methods , Regeneration/physiology , Tendon Injuries/pathology , Tendon Injuries/surgery , Tensile Strength/physiology
20.
PLoS One ; 9(9): e106722, 2014.
Article in English | MEDLINE | ID: mdl-25181476

ABSTRACT

Low intensity pulsed ultrasound (LIPUS) has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs) and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37 °C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the crucial mechanisms through which LIPUS exerted influence on fracture healing.


Subject(s)
Cell Movement , Chemokine CXCL12/metabolism , Fracture Healing , Mesenchymal Stem Cells/cytology , Signal Transduction , Ultrasonics , Animals , Biomechanical Phenomena , Chemokine CXCL12/blood , Chemokine CXCL12/genetics , Female , Femur/cytology , Femur/diagnostic imaging , Femur/injuries , Femur/physiology , Gene Expression Regulation , Rats , Rats, Sprague-Dawley , Receptors, CXCR4/metabolism , Tibia/cytology , Tibia/diagnostic imaging , Tibia/injuries , Tibia/physiology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...