Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 38(5): 2495-2508, 2017 05.
Article in English | MEDLINE | ID: mdl-28176436

ABSTRACT

One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alzheimer Disease/pathology , Brain Mapping , Cognitive Dysfunction/pathology , Gray Matter/pathology , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Female , Gray Matter/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Psychiatric Status Rating Scales
2.
NMR Biomed ; 28(10): 1267-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26313542

ABSTRACT

The purpose of this work was to investigate the effects of hemispheric location, gender and age on susceptibility value, as well as the association between susceptibility value and diffusional metrics, in deep gray matter. Iron content was estimated in vivo using quantitative susceptibility mapping. Microstructure was probed using diffusional kurtosis imaging. Regional susceptibility and diffusional metrics were measured for the putamen, caudate nucleus, globus pallidus, thalamus, substantia nigra and red nucleus in 42 healthy adults (age range 25-78 years). Susceptibility value was significantly higher in the left than the right side of the caudate nucleus (P = 0.043) and substantia nigra (P < 0.001). Women exhibited lower susceptibility values than men in the thalamus (P < 0.001) and red nucleus (P = 0.032). Significant age-related increases of susceptibility were observed in the putamen (P < 0.001), red nucleus (P < 0.001), substantia nigra (P = 0.004), caudate nucleus (P < 0.001) and globus pallidus (P = 0.017). The putamen exhibited the highest rate of iron accumulation with aging (slope of linear regression = 0.73 × 10(-3) ppm/year), which was nearly twice those in substantia nigra (slope = 0.40 × 10(-3) ppm/year) and caudate nucleus (slope = 0.39 × 10(-3) ppm/year). Significant positive correlations between the susceptibility value and diffusion measurements were observed for fractional anisotropy (P = 0.045) and mean kurtosis (P = 0.048) in the putamen without controlling for age. Neither correlation was significant after controlling for age. Hemisphere, gender and age-related differences in iron measurements were observed in deep gray matter. Notably, the putamen exhibited the highest rate of increase in susceptibility with aging. Correlations between susceptibility value and microstructural measurements were inconclusive. These findings could provide new clues for unveiling mechanisms underlying iron-related neurodegenerative diseases.


Subject(s)
Aging/metabolism , Brain Chemistry , Diffusion Magnetic Resonance Imaging/methods , Gray Matter/chemistry , Iron/analysis , Sex Characteristics , Adult , Aged , Disease Susceptibility , Dominance, Cerebral , Female , Humans , Iron Overload/complications , Iron Overload/diagnosis , Iron Overload/metabolism , Iron Overload/pathology , Male , Middle Aged , Models, Biological , Parkinson Disease/etiology
3.
Neurobiol Aging ; 35(10): 2203-16, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24910392

ABSTRACT

Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that were complementary to diffusivity metrics. Kurtosis together with diffusivity can more comprehensively characterize microstructural compositions and age-related changes than diffusivity alone. Combined with proper model, it may also assist in providing neurobiological interpretations of the identified alterations.


Subject(s)
Aging/pathology , Diffusion Magnetic Resonance Imaging/methods , Gray Matter/pathology , White Matter/pathology , Adult , Aged , Aged, 80 and over , Cognition , Female , Gray Matter/physiology , Humans , Male , Middle Aged , White Matter/physiology
4.
Magn Reson Imaging ; 31(5): 688-94, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23347602

ABSTRACT

OBJECT: Diffusional kurtosis imaging (DKI), a natural extension of diffusion tensor imaging (DTI), can characterize non-Gaussian diffusion in the brain. We investigated the capability of DKI parameters for detecting microstructural changes in both gray matter (GM) and white matter (WM) in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) and sought to determine whether these DKI parameters could serve as imaging biomarkers to indicate the severity of cognitive deficiency. MATERIALS AND METHODS: DKI was performed on 18AD patients and 12 MCI patients. Fractional anisotropy, kurtosis and diffusivity parameters in the temporal, parietal, frontal and occipital lobes were compared between the two groups using Mann-Whitney U test. The correlations between regional DKI parameters and mini-mental state examination (MMSE) score were tested using Pearson's correlation. RESULTS: In ADs, significantly increased diffusivity and decreased kurtosis parameters were observed in both the GM and WM of the parietal and occipital lobes as compared to MCIs. Significantly decreased fractional anisotropy was also observed in the WM of these lobes in ADs. With the exception of fractional anisotropy and radial kurtosis, all the five other DKI parameters exhibited significant correlations with MMSE score in both GM and WM. CONCLUSION: Bearing additional information, the DKI model can provide sensitive imaging biomarkers for assessing the severity of cognitive deficiency in reference to MMSE score and potentially improve early detection and progression monitoring of AD based on characterizing microstructures in both the WM and especially the GM.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/pathology , Cognitive Dysfunction/complications , Cognitive Dysfunction/pathology , Diffusion Magnetic Resonance Imaging/methods , Nerve Fibers, Myelinated/pathology , Neurons/pathology , Aged , Algorithms , Female , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Male , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...