Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e15689, 2023 May.
Article in English | MEDLINE | ID: mdl-37234658

ABSTRACT

Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.

2.
Scoliosis Spinal Disord ; 11(1): 26, 2016.
Article in English | MEDLINE | ID: mdl-27635416

ABSTRACT

BACKGROUND: Ligamentum flavum (LF) hypertrophy is a common cause of lumbar spinal stenosis and is thought to be degeneration-driven. Developmental spinal stenosis (DSS) is characterized by pre-existing narrowed spinal canals and is likely a developmental problem that occurs in childhood. In these cases, the LF may demonstrate different characteristics as compared to degeneration-driven stenosis. Thus, this study aimed to investigate the relationship between histological changes of LF and canal size. METHODS: Patients who had surgical decompression for lumbar spinal stenosis were prospectively recruited and divided into three groups (critical DSS, relative DSS and non-DSS) based on previously defined anteroposterior bony spinal canal diameter measurements on MRI. The degree of disc degeneration and LF thickness were also measured from L1 to S1. Surgical LF specimens were retrieved for histological assessment of fibrotic grade and area of fibrosis. RESULTS: A total of 19 females and 15 males (110 LF specimens) with an overall mean age of 65.9 years (SD ± 9.8 years) were recruited. DSS was found to have a significant negative correlation (p < 0.001) with LF thickness, its fibrotic grade and area of fibrosis (%). Non-DSS exhibited a significant positive relationship with the degree of LF fibrosis. Disc degeneration and LF thickness had no correlation with LF histology. CONCLUSIONS: Our study is the first to definitively note that degeneration is the cause of LF fibrosis in non-DSS patients; however, in contrast, an inverse relationship exists between canal size and LF fibrosis in DSS patients, suggesting a different pathomechanism. Hence, despite a similar degree of LF thickness, DSS patients have LF with less fibrosis compared with non-DSS patients. Further investigation of the cause of LF changes in DSS is necessary to understand this relationship.

SELECTION OF CITATIONS
SEARCH DETAIL
...