Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 1 Suppl 2: 35-41, 2001 Nov 21.
Article in English | MEDLINE | ID: mdl-12805779

ABSTRACT

The nitrogen (N) balance in a double-cropped, effluent spray irrigation system was examined for several years in southern Australia. The amounts of N added by irrigation, removed in the crop, and lost by ammonia (NH3) volatilisation, denitrification, and leaching were measured. Results from the project provide pig producers with the knowledge necessary to evaluate the efficiency of such systems for managing N, and enable sustainable effluent reuse practices to be developed. Oats were grown through the winter (May to November) without irrigation, and irrigated maize was grown during the summer/autumn (December to April). Approximately 18 mm of effluent was applied every 3 days. The effluent was alkaline (pH 8.3) and the average ammoniacal-N (NH4+ + NH3) concentration was 430 mg N/l (range: 320 to 679 mg N/l). Mineral N in the 0- to 1.7-m layer tended to increase during the irrigation season and decrease during the winter/spring. About 2000 kg N/ha was found in the profile to a depth of 2 m in October 2000. N removed in the aboveground biomass (oats + maize) was 590 and 570 kg N/ha/year, equivalent to 25% of the applied N. Average NH3 volatilisation during the daytime (6:00 to 19:00) was 2.74 kg N/ha, while volatilisation at night (19:00 to 6:00) was 0.4 kg N/ha, giving a total of 3.1 kg N/ha/day. This represents approximately 12% of the N loading, assuming that these rates apply throughout the season. The balance of the N accumulated in the soil profile during the irrigation season, as 15N-labelled N studies confirmed. The high recovery of the 15N-labelled N, and the comparable distribution of 15N and Br in the soil profile, implied that there was little loss of N by denitrification, even though the soil was wet enough for leaching of both tracers.


Subject(s)
Agriculture/methods , Nitrogen/metabolism , Silage , Agriculture/trends , Ammonia/metabolism , Animals , Australia , Climate , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Fertilizers , Humans , Minerals/analysis , Minerals/metabolism , Soil/analysis , Swine/growth & development , Volatilization , Zea mays/growth & development
2.
Oecologia ; 95(2): 153-163, 1993 Aug.
Article in English | MEDLINE | ID: mdl-28312937

ABSTRACT

Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is >0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less.Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone.Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.

3.
Oecologia ; 88(4): 494-503, 1991 Dec.
Article in English | MEDLINE | ID: mdl-28312618

ABSTRACT

A simulation model for radiation absorption and photosynthesis was used to test the hypothesis that observed nonuniform distributions of nitrogen concentrations in young Eucalyptus grandis trees result in greater amounts of daily assimilation than in hypothetical trees with uniform N distributions. Simulations were performed for trees aged 6, 9, 12 and 16 months which had been grown in plantations under a factorial combination of two levels of fertilization and irrigation. Observed leaf N distribution patterns yielded daily assimilation rates which were only marginally greater (<5%) than for hypothetical trees with uniform distributions. Patterns of assimilation distribution in individual tree crowns closely resembled those for absorbed radiation, rather than for N. These conclusions were unaffected by three choices of alternative leaf area density distributions. The simulation model was also used to calculate hourly and daily rates of canopy assimilation to investigate the relative importance of radiation absorption and total canopy nitrogen on assimilation. Simulated hourly rates of carbon assimilation were often lightsaturated, whereas daily carbon gain was directly proportional to radiation absorbed by the tree crown and to total mass of N in the leaves. Leaf nitrogen concentrations determined photosynthetic capacity, whereas total leaf area determined the amount of radiation absorbed and thus the degree to which capacity was realized. Observed total leaf area and total crown N were closely correlated. The model predicted that nitrogen use efficiences (NUE, mol CO2 mol-1 N) were 60% higher for unfertilized than for fertilized trees at low levels of absorbed photosynthetically active radiation (PAR). Nitrogen use efficiency was dependent on fertilizer treatment and on the amount of absorbed PAR; NUE declined with increasing absorbed PAR, but decreased more rapidly for unfertilized than for fertilized trees. Annual primary productivity was linearly related to both radiation absorbed and to mass of N in the canopy.

4.
Oecologia ; 88(4): 504-510, 1991 Dec.
Article in English | MEDLINE | ID: mdl-28312619

ABSTRACT

Eucalyptus grandis trees were grown in plantations with and without added fertiliser to examine the effects of plant nutrition on photosynthesis and growth. Leaves were sampled from known locations within canopies of selected trees and leaf N and P concentrations were measured. Contour maps of N and P distributions were then produced for crowns of trees aged between 6 and 16 months. Gas exchange measurements on sample leaves were used to estimate parameters of a model of C3 photosynthesis as a function of leaf N and P contentrations. Linear relationships were obtained between model parameters and leaf N concentration, but P appeared to be present in excess, since no correlation was found with P contentration. Photosynthetic light response curves were calculated for model leaves with differing N concentrations. The curves show that optimal concentrations of N in leaves depend on mean levels of irradiance during growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...