Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(51): 21101-21114, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38091715

ABSTRACT

In search of new multifunctional hybrid materials and in order to investigate the influence of chemical modification on the possible synergy between properties, the carboxylate and sulfonate derivatives of photo- and thermochromic N-salicylidene aniline were successfully inserted into Co(II)- and Zn(II)-based layered simple hydroxides, resulting in four novel hybrids: Co-N-Sali-COO, Co-N-Sali-SO3, Zn-N-Sali-COO, and Zn-N-Sali-SO3. All synthesized hybrids adopt a double organic layered configuration, which prevents the cis-trans photoisomerization ability of N-Sali-R molecules in the hybrids. However, the Zn hybrids exhibit fluorescence upon exposure to UV light due to the excited-state intramolecular proton transfer (ESIPT) mechanism. The thermally stimulated keto-enol tautomerization of N-salicylidene aniline in the hybrids was related with the changes in interlamellar spacings observed by temperature-dependent PXRD. This tautomerization process was prominently evident in the Co-N-Sali-SO3 hybrid (about 11% increase in d-spacing upon decreasing the temperature to -180 °C). Finally, the Co-N-Sali-R hybrids exhibit the typical magnetic behavior associated with Co(II)-based LSHs (ferrimagnetic ordering at TN = 6.8 and 7.7 K for Co-N-Sali-COO and Co-N-Sali-SO3, respectively). This work offers insights into isomerization in LSHs and the ESIPT mechanism's potential in new luminescent materials and prospects for designing new multifunctional materials.

2.
J Colloid Interface Sci ; 607(Pt 1): 621-632, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34520905

ABSTRACT

HYPOTHESIS: While controlled and efficient exfoliation of layered oxides often remains a time consuming challenge, the surface modification of inorganic nanosheets is of outmost importance for future applications. The functionalization of the bulk material prior to exfoliation should allow the application of tools developped for Van der Waals materials to directly produce functionalized oxide nanosheets. EXPERIMENTS: The Aurivillius phase Bi2SrTa2O9 is functionalized by a linear aliphatic phosphonic acid via microwave-assisted reactions. The structure of the hybrid material and the coordination of the phosphonate group is scrutinized, notably by Pair Distribution Function. This functionalized layered oxide is then exfoliated in one hour in organic solvent, using high shear force dispersion. The obtained nanosheets are characterized in suspension and as deposits to check their chemical integrity. FINDINGS: The covalent functionalization decreases the electrostatic cohesion between the inorganic layers leading to an efficient exfoliation in short time under shearing. The functionalization of the bulk material is preserved on the nanosheets upon exfoliation and plays a major role to enable liquid-phase exfoliation and in the stability of the resulting suspensions. This strategy is very promising for the straighforward preparation of functionalized nanosheets, paving the way for versatile design of new (multi)functional hybrid nanosheets for various potential applications.

3.
Biochim Biophys Acta Gen Subj ; 1863(2): 332-341, 2019 02.
Article in English | MEDLINE | ID: mdl-30391506

ABSTRACT

Human serum albumin (HSA) nanoparticles emerge as promising carriers for drug delivery. Among challenges, one important issue is the design of HSA nanoparticles with a low mean size of ca. 50 nm and having a high drug payload. The original strategy developed here is to use sacrificial mesoporous nanosilica templates having a diameter close to 30 nm to drive the protein nanocapsule formation. This new approach ensures first an efficient high drug loading (ca. 30%) of Doxorubicin (DOX) in the porous silica by functionalizing silica with an aminosiloxane layer and then allows the one-step adsorption and the physical cross-linking of HSA by modifying the silica surface with isobutyramide (IBAM) groups. After silica template removal, homogenous DOX-loaded HSA nanocapsules (30-60 nm size) with high drug loading capacity (ca. 88%) are thus formed. Such nanocapsules are shown efficient in multicellular tumor spheroid models (MCTS) of human hepatocarcinoma cells by their significant growth inhibition with respect to controls. Such a new synthesis approach paves the way toward new protein based nanocarriers for drug delivery.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Models, Biological , Nanoparticles/chemistry , Serum Albumin, Human/chemistry , Silicon Dioxide/chemistry , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Cell Death/drug effects , Cell Proliferation/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Humans , Nanoparticles/administration & dosage , Particle Size , Porosity , Serum Albumin, Human/administration & dosage , Surface Properties , Tumor Cells, Cultured
4.
Beilstein J Nanotechnol ; 9: 2775-2787, 2018.
Article in English | MEDLINE | ID: mdl-30498650

ABSTRACT

The synthesis and characterization of six new lanthanide networks [Ln(L)(ox)(H2O)] with Ln = Eu3+, Gd3+, Tb3+, Dy3+, Ho3+ and Yb3+ is reported. They were synthesized by solvo-ionothermal reaction of lanthanide nitrate Ln(NO3)3·xH2O with the 1,3-bis(carboxymethyl)imidazolium [HL] ligand and oxalic acid (H2ox) in a water/ethanol solution. The crystal structure of these compounds has been solved on single crystals and the magnetic and luminescent properties have been investigated relying on intrinsic properties of the lanthanide ions. The synthetic strategy has been extended to mixed lanthanide networks leading to four isostructural networks of formula [Tb1- x Eu x (L)(ox)(H2O)] with x = 0.01, 0.03, 0.05 and 0.10. These materials were assessed as luminescent ratiometric thermometers based on the emission intensities of ligand, Tb3+ and Eu3+. The best sensitivities were obtained using the ratio between the emission intensities of Eu3+ (5D0→7F2 transition) and of the ligand as the thermometric parameter. [Tb0.97Eu0.03(L)(ox)(H2O)] was found to be one of the best thermometers among lanthanide-bearing coordination polymers and metal-organic frameworks, operative in the physiological range with a maximum sensitivity of 1.38%·K-1 at 340 K.

5.
Chem Sci ; 9(35): 7104-7114, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30310631

ABSTRACT

Microwave-assisted functionalization of the layered Aurivillius phase Bi2SrTa2O9 by alcohols is thoroughly investigated. The grafting of linear aliphatic and bulky alcohols is studied as a function of the starting material, underlining the importance of the prefunctionalization of the layered perovskite, for instance by butylamine. In addition, the functionalization by α,ω-alkanediols is explored. α,ω-alkanediols bearing long alkyl chains (n C > 3) adopt an unprecedented pillaring arrangement, whereas 1,3-propanediol and ethyleneglycol adopt a bilayer arrangement, only one out of the two hydroxyl groups being coordinated. Finally, the reactivities of alcohols and amines towards insertion are compared: the preferential reactivity of the two functional groups appears to be strongly dependent of the reaction conditions, and especially of the water content. This study is further extended to the case of amino-alcohol insertion. In this case, the amine group is preferentially bound, but it is possible to control the grafting of the alcohol moiety, thus going from a bilayer arrangement to a pillaring one. This work is of particular importance to be able to functionalize easily and rapidly layered oxides with elaborated molecules, bearing several different potentially reactive groups.

6.
Inorg Chem ; 55(19): 9790-9797, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27618400

ABSTRACT

A new strategy for the functionalization of layered perovskites is presented, based on the in situ post-synthesis modification of a prefunctionalized phase by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC). The microwave-assisted protonation and grafting of an alkyne alcohol provides the alkyne-functionalized precursor within a few hours, starting from Bi2SrTa2O9. The subsequent microwave-assisted in situ "click reaction" allows the post-synthesis modification of the precursor within ∼2 h, providing a layered perovskite functionalized by an alcohol-grafted 1,4-disubstituted-1H-1,2,3-triazole. Two compounds are described here, bearing an aliphatic and an aromatic substituent, which illustrates the general application of the method. This work opens new perspectives for the functionalization of layered perovskites, going beyond mere insertion/grafting reactions, and thus broadens the design possibilities and the range of applications of these hybrid systems.

7.
Inorg Chem ; 55(8): 4039-46, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27042754

ABSTRACT

A new method of acidification and subsequent functionalization of the Aurivillius-phase Bi2SrTa2O9 (BST), using microwave irradiation, was developed. This method enables to obtain hybridized phases from layered BST. Functionalization of BST by various kinds of amines and diamines can be achieved in a few hours only, compared to much longer time (over a week) using conventional heating. Good crystallinity of the compounds is kept. In addition, a microwave-assisted preintercalation strategy was developed, allowing inserting new amines (bearing cyclic or aromatic groups) between the oxide layers previously unseen in this type of compound. This work opens new perspectives for the fast and easy functionalization of layered oxides with more elaborated molecules.

8.
Langmuir ; 32(6): 1621-8, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26807596

ABSTRACT

Magnetic nanoparticle arrays represent a very attractive research field because their collective properties can be efficiently modulated as a function of the structure of the assembly. Nevertheless, understanding the way dipolar interactions influence the intrinsic magnetic properties of nanoparticles still remains a great challenge. In this study, we report on the preparation of 2D assemblies of iron oxide nanoparticles as monolayers deposited onto substrates. Assemblies have been prepared by using the Langmuir-Blodgett technique and the SAM assisted assembling technique combined to CuAAC "click" reaction. These techniques afford to control the formation of well-defined monolayers of nanoparticles on large areas. The LB technique controls local ordering of nanoparticles, while adjusting the kinetics of CuAAC "click" reaction strongly affects the spatial arrangement of nanoparticles in monolayers. Fast kinetics favor disordered assemblies while slow kinetics favor the formation of chain-like structures. Such anisotropic assemblies are induced by dipolar interactions between nanoparticles as no magnetic field is applied and no solvent evaporation is performed. The collective magnetic properties of monolayers are studied as a function of average interparticle distance, local order and local shape anisotropy. We demonstrate that local control on spatial arrangement of nanoparticles in monolayers significantly strengthens dipolar interactions which enhances collective properties and results in possible super ferromagnetic order.

9.
Small ; 11(36): 4638-42, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26097151

ABSTRACT

Integration of nanoparticles (NPs) into nanodevices is a challenge for enhanced sensor development. Using NPs as building blocks, a bottom-up approach based on one-pot morphogen-driven electroclick chemistry is reported to self-construct dense and robust conductive Fe3O4 NP films. Deposited covalent NP assemblies establish an electrical connection between two gold electrodes separated by a 100 nm-wide nanotrench.

10.
Nanoscale ; 6(20): 12080-8, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25195770

ABSTRACT

The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.

11.
Nanoscale ; 5(4): 1507-16, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23306456

ABSTRACT

Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature T(B) increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model.


Subject(s)
Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Models, Chemical , Computer Simulation , Dendrimers/chemistry , Magnetic Fields , Materials Testing , Powders
12.
Langmuir ; 27(10): 6235-43, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21495667

ABSTRACT

Assemblies of magnetic nanoparticles (NPs) are intensively studied due to their high potential applications in spintronic, magnetic and magneto-electronic. The fine control over NP density, interdistance, and spatial arrangement onto substrates is of key importance to govern the magnetic properties through dipolar interactions. In this study, magnetic iron oxide NPs have been assembled on surfaces patterned with self-assembled monolayers (SAMs) of mixed organic molecules. The modification of the molar ratio between coadsorbed 11-mercaptoundecanoic acid (MUA) and mercaptododecane (MDD) on gold substrates is shown to control the size of NPs domains and thus to modulate the characteristic magnetic properties of the assemblies. Moreover, NPs can be used to indirectly probe the structure of SAMs in domains at the nanometer scale.

13.
Dalton Trans ; 39(44): 10577-80, 2010 Nov 28.
Article in English | MEDLINE | ID: mdl-20922249

ABSTRACT

Synthesis of new heterometallic layered magnets with controlled chirality have been achieved by insertion of chiral and non-chiral salen-type Ni(II) complexes into copper and cobalt layered simple hydroxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...