Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 286(2): 241-278, 2019 01.
Article in English | MEDLINE | ID: mdl-30027602

ABSTRACT

The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/pathology , Unfolded Protein Response , Animals , Endoplasmic Reticulum/metabolism , Homeostasis , Humans , Signal Transduction
2.
Nat Commun ; 9(1): 3267, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111846

ABSTRACT

Triple-negative breast cancer (TNBC) lacks targeted therapies and has a worse prognosis than other breast cancer subtypes, underscoring an urgent need for new therapeutic targets and strategies. IRE1 is an endoplasmic reticulum (ER) stress sensor, whose activation is predominantly linked to the resolution of ER stress and, in the case of severe stress, to cell death. Here we demonstrate that constitutive IRE1 RNase activity contributes to basal production of pro-tumorigenic factors IL-6, IL-8, CXCL1, GM-CSF, and TGFß2 in TNBC cells. We further show that the chemotherapeutic drug, paclitaxel, enhances IRE1 RNase activity and this contributes to paclitaxel-mediated expansion of tumor-initiating cells. In a xenograft mouse model of TNBC, inhibition of IRE1 RNase activity increases paclitaxel-mediated tumor suppression and delays tumor relapse post therapy. We therefore conclude that inclusion of IRE1 RNase inhibition in therapeutic strategies can enhance the effectiveness of current chemotherapeutics.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays , Animals , Cell Line , Cell Line, Tumor , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/genetics , Enzyme Inhibitors/administration & dosage , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice, Nude , Paclitaxel/administration & dosage , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , RNA Interference , Triple Negative Breast Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...