Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(17): 9681-9, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22876912

ABSTRACT

Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.


Subject(s)
Eggs/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Falconiformes/blood , Altitude , Animals , Canada , Ecosystem , Falconiformes/growth & development , Ice Cover/chemistry
2.
Environ Int ; 40: 24-32, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22280924

ABSTRACT

Mercury (Hg) is a global contaminant impacting even remote environments. In alpine watersheds, glacial meltwater is a source of Hg, which accumulated in glaciers during the 1960-1980 cooling cycle. The considerable variation observed for Hg exposure of alpine animals in proximal watersheds could result from differences among those watersheds in Hg loading from glacial meltwater. Alternatively, variation may be the result of hydrology, atmospheric Hg deposition patterns, or food web characteristics. To examine those possibilities, we measured Hg in ospreys (Pandion haliaetus), apex predators in 15 watersheds in western Canada. Mercury levels in feathers of nestlings increased with increasing modeled atmospheric deposition rates and decreased with lake size. In eggs mercury decreased with δ(13)C, an indicator of food web structure, and with pH and elevation. Thus, Hg levels in chicks were strongly associated with local patterns relevant when the chicks were growing (e.g. the period post-snow melt: Hg deposition, lake size) while Hg levels in eggs were weakly associated with local patterns relevant during the snow melt (elevation, δ(13)C), with the remainder of the Hg variation in eggs determined by other factors such as possible Hg accumulation by the adult elsewhere. Modeled atmospheric deposition from prevailing upwind locations including Asia, followed by runoff into small lakes, were related to Hg patterns in osprey, with little apparent role for recent melting of glaciers. Our study highlights the importance of physical patterns to the environmental chemistry of top predators.


Subject(s)
Environmental Exposure/analysis , Falconiformes/metabolism , Mercury/analysis , Water Pollutants, Chemical/analysis , Air Pollution/statistics & numerical data , Animals , Asia , Atmosphere/chemistry , Canada , Environmental Exposure/statistics & numerical data , Feathers/chemistry , Female , Food Chain , Freezing , Ice Cover/chemistry , Lakes/chemistry , Mercury/metabolism , Models, Chemical , Ovum/metabolism , Snow/chemistry , Water Pollutants, Chemical/metabolism
3.
Environ Entomol ; 38(5): 1387-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19825293

ABSTRACT

The pea leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae), is a highly polyphagous insect pest of global distribution. L. huidobrensis feeds and lays its eggs on leaf tissue and reduces crop marketability because of stippling and mining damage. In field insecticide trials, it was observed that stippling was reduced on plants treated with surfactant alone. The objectives of this study were to determine the effect of surfactants on host selection behaviors of female L. huidobrensis and to assess the phytotoxicity of two common surfactants to test plants. The application of the surfactant Sylgard 309 to celery (Apium graveolens) caused a significant reduction in stippling rates. The application of Agral 90 to cucumber leaves (Cucumis sativus) resulted in changes to the amount of effort invested by females in specific host plant selection behaviors, as well as causing a significant reduction in the amount of stippling damage. The recommended dose of Sylgard 309 does not induce phytotoxicity on celery over a range of age classes nor does Agral 90 cause a phytotoxic effect in 35-d-old cucumber. Thus, reductions in observed stippling and changes to host selection behaviors were caused by an antixenotic effect of the surfactant on L. huidobrensis rather than a toxic effect of the surfactant on the plant. The presence of surfactant on an otherwise acceptable host plant seems to have masked host plant cues and prevented host plant recognition. Results indicate that surfactants may be used to reduce leafminer damage to vegetable crops, potentially reducing the use of insecticides.


Subject(s)
Behavior, Animal/drug effects , Diptera/physiology , Insect Control/methods , Nonoxynol/pharmacology , Surface-Active Agents/pharmacology , Animals , Apium/drug effects , Cucumis sativus/drug effects , Diptera/drug effects , Feeding Behavior/drug effects , Female , Siloxanes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...