Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 131 Suppl: S71-84, 2005.
Article in English | MEDLINE | ID: mdl-16569294

ABSTRACT

Here we review recent studies on the mode of action of the cholinergic anthelmintics (levamisole, pyrantel etc.). We also include material from studies on the free living nematode Caenorhabditis elegans. The initial notion that these drugs act on a single receptor population, while attractive, has proven to be an oversimplification. In both free living and parasitic nematodes there are multiple types of nicotinic acetylcholine receptor (nAChR) on the somatic musculature. Each type has different (sometimes subtly so) pharmacological properties. The implications of these findings are: (1) combinations of anthelmintic that preferentially activate a broad range of nAChR types would be predicted to be more effective; (2) in resistant isolates of parasite where a subtype has been lost, other cholinergic anthelmintics may remain effective. Not only are there multiple types of nAChR, but relatively recent research has shown these receptors can be modulated; it is possible to increase the response of a parasite to a fixed concentration of drug by altering the receptor properties (e.g. phosphorylation state). These findings offer a potential means of increasing efficacy of existing compounds as an alternative to the costly and time consuming development of new anthelmintic agents.


Subject(s)
Antinematodal Agents/pharmacology , Levamisole/pharmacology , Nematoda/drug effects , Nematoda/physiology , Receptors, Neurotransmitter/drug effects , Receptors, Neurotransmitter/metabolism , Adenosine Triphosphate/metabolism , Animals , Antinematodal Agents/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Drug Resistance/physiology , Larva/physiology , Levamisole/metabolism , Membrane Potentials/physiology , Nematoda/enzymology , Nematoda/metabolism , Neuropeptides/drug effects , Neuropeptides/physiology , Patch-Clamp Techniques/veterinary , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases/metabolism , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/classification , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism
2.
J Neurochem ; 74(3): 1279-89, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10693962

ABSTRACT

A snake venom-derived alpha-neurotoxin, alpha-bungarotoxin (alphaBgtx), is the classic competitive antagonist of nicotinic acetylcholine receptors (nAChRs). The very high specificity and essentially irreversible binding of alphaBgtx to various nAChRs make alphaBgtx the prime candidate for studying the molecular determinants of specificity for nAChR-ligand interactions. To facilitate site-directed mutagenesis of alphaBgtx for functional analysis, we have developed a recombinant expression system for alphaBgtx using the methylotropic yeast Pichia pastoris. A synthetic gene coding for alphaBgtx was subcloned into an expression vector that directs secretion of the recombinant alphaBgtx (rBgtx) when stably integrated into the yeast genome. Expression of rBgtx was induced by growth of yeast cultures with methanol as the sole carbon source. The activity of the rBgtx in the cell-free medium was measured by competition with 1251-Bgtx for binding to Torpedo nAChR-enriched membranes. The rBgtx, purified to homogeneity by standard HPLC, has the correct predicted amino terminal sequence and molecular mass. Its circular dichroism spectrum is very similar to that of authentic venom-derived alphaBgtx, and the biological activity of the rBgtx is identical to that of authentic alphaBgtx. We have used the Pichia expression system to study a double point mutation of alphaBgtx, rBgtx-K38P/L42Q, that has a high affinity for alpha3beta2 neuronal nAChRs. This is the first demonstration of engineering an alpha-neurotoxin to recognize non-alpha7 neuronal nicotinic receptors.


Subject(s)
Bungarotoxins/genetics , Bungarotoxins/metabolism , Neurons/metabolism , Pichia/metabolism , Point Mutation/physiology , Receptors, Nicotinic/metabolism , Animals , Biotechnology , Bungarotoxins/isolation & purification , Mutagenesis, Site-Directed , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Torpedo
3.
J Mol Biol ; 294(3): 639-55, 1999 Dec 03.
Article in English | MEDLINE | ID: mdl-10610786

ABSTRACT

In our studies of lac repressor tetramer (T)-lac operator (O) interactions, we observed that the presence of extended regions of non-operator DNA flanking a single lac operator sequence embedded in plasmid DNA produced large and unusual cooperative and anticooperative effects on binding constants (Kobs) and their salt concentration dependences for the formation of 1:1 (TO) and especially 1:2 (TO2) complexes. To explore the origin of this striking behavior we report and analyze binding data on 1:1 (TO) and 1:2 (TO2) complexes between repressor and a single O(sym) operator embedded in 40 bp, 101 bp, and 2514 bp DNA, over very wide ranges of [salt]. We find large interrelated effects of flanking DNA length and [salt] on binding constants (K(TO)obs, K(TO2)obs) and on their [salt]-derivatives, and quantify these effects in terms of the free energy contributions of two wrapping modes, designated local and global. Both local and global wrapping of flanking DNA occur to an increasing extent as [salt] decreases. Global wrapping of plasmid-length DNA is extraordinarily dependent on [salt]. We propose that global wrapping is driven at low salt concentration by the polyelectrolyte effect, and involves a very large number (>/similar 20) of coulombic interactions between DNA phosphates and positively charged groups on lac repressor. Coulombic interactions in the global wrap must involve both the core and the second DNA-binding domain of lac repressor, and result in a complex which is looped by DNA wrapping. The non-coulombic contribution to the free energy of global wrapping is highly unfavorable ( approximately +30-50 kcal mol(-1)), which presumably results from a significant extent of DNA distortion and/or entropic constraints. We propose a structural model for global wrapping, and consider its implications for looping of intervening non-operator DNA in forming a complex between a tetrameric repressor (LacI) and one multi-operator DNA molecule in vivo and in vitro. The existence of DNA wrapping in LacI-DNA interactions motivates the proposal that most if not all DNA binding proteins may have evolved the capability to wrap and thereby organize flanking regions of DNA.


Subject(s)
Bacterial Proteins/metabolism , DNA/metabolism , Escherichia coli Proteins , Lac Operon , Nucleic Acid Conformation , Repressor Proteins/metabolism , Binding Sites , Lac Repressors , Models, Molecular , Potassium/metabolism , Protein Conformation , Structure-Activity Relationship , Thermodynamics
4.
J Biol Chem ; 274(37): 26113-9, 1999 Sep 10.
Article in English | MEDLINE | ID: mdl-10473561

ABSTRACT

We have investigated the molecular determinants responsible for alpha-bungarotoxin (alphaBgtx) binding to nicotinic acetylcholine receptors through chimeric analysis of two homologous alpha subunits, one highly sensitive to alphaBgtx block (alpha1) and the other, alphaBgtx-insensitive (alpha3). By replacing rat alpha3 residues 184-191 with the corresponding region from the Torpedo alpha1 subunit, we introduced a cluster of five alpha1 residues (Trp-184, Trp-187, Val-188, Tyr-189, and Thr-191) into the alpha3 subunit. Functional activity and alphaBgtx sensitivity were assessed following co-expression in Xenopus oocytes of the chimeric alpha3 subunit (alpha3/alpha1[5]) with either rat beta2 or beta4 subunits. Agonist-evoked responses of alpha3/alpha1[5]-containing receptors were blocked by alphaBgtx with nanomolar affinity (IC(50) values: 41 nM for alpha3/alpha1[5]beta2 and 19 nM for alpha3/alpha1[5]beta4). Furthermore, receptors containing the single point mutation alpha3K189Y acquire significant sensitivity to alphaBgtx block (IC(50) values: 186 nM for alpha3K189Ybeta2 and 179 nM for alpha3K189Ybeta4). Another alpha3 chimeric subunit, alpha3/alpha7[6], similar to alpha3/alpha1[5] but incorporating the corresponding residues from the alphaBgtx-sensitive alpha7 subunit, also conferred potent alphaBgtx sensitivity to chimeric receptors when co-expressed with the beta4 subunit (IC(50) value = 31 nM). Our findings demonstrate that the residues between positions 184 and 191 of the alphaBgtx-sensitive subunits alpha1 and alpha7 play a critical functional role in the interaction of alphaBgtx with nicotinic acetylcholine receptors sensitive to this toxin.


Subject(s)
Amino Acids/metabolism , Bungarotoxins/pharmacology , Neurons/metabolism , Receptors, Nicotinic/drug effects , Amino Acid Sequence , Animals , Binding Sites , Bungarotoxins/metabolism , Molecular Sequence Data , Protein Binding , Rats , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Xenopus
5.
Biochemistry ; 38(24): 7847-55, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10387025

ABSTRACT

A polyhistidine tag was added to the N-terminus of alpha-bungarotoxin (Bgtx) recombinantly expressed in E. coli. The His-tagged Bgtx was identical to native, venom-derived Bgtx in its apparent affinity for the nicotinic acetylcholine receptor (nAChR) in Torpedo electric organ membranes. Furthermore, in a physiological assay involving mouse muscle nAChR expressed in Xenopus oocytes, the His-tagged Bgtx was as effective as authentic Bgtx at blocking acetylcholine-evoked currents. Ala-substitution mutagenesis of His-tagged Bgtx was used to evaluate the functional contribution of Arg36, a residue that is invariant among all alpha-neurotoxins. Replacement with Ala resulted in a 90-fold decrease in the apparent affinity for the Torpedo nAChR and a corresponding 150-fold increase in the IC50 for block of heterologously expressed mouse muscle nAChR, demonstrating the critical importance of this positive charge for the binding and functional activity of a long alpha-neurotoxin. The observed decrease in affinity corresponds to a DeltaDeltaG of 2.7 kcal/mol and indicates that Arg36 makes a major contribution to complex formation. This finding is consistent with the proposal that Arg36 mimics the positive charge found on acetylcholine and directs the toxin to interact with receptor sites normally involved in acetylcholine recognition. In comparison, Ala-substitution of the highly conserved Lys26 resulted in only a 9-fold decrease in apparent affinity. Truncation of the His-tagged Bgtx following residue 67 produces a toxin lacking the seven C-terminal residues including the two positively charged residues Lys70 and Arg72. Truncation leads to a 7-fold decrease in apparent binding affinity.


Subject(s)
Amino Acids/physiology , Bungarotoxins/physiology , Histidine/genetics , Mutagenesis, Site-Directed , Recombinant Fusion Proteins/metabolism , Amino Acid Substitution/genetics , Amino Acids/genetics , Amino Acids/metabolism , Animals , Bacteriophage T4/genetics , Binding, Competitive/genetics , Bungarotoxins/genetics , Bungarotoxins/metabolism , Escherichia coli/genetics , Genetic Vectors/metabolism , Genetic Vectors/pharmacology , Histidine/metabolism , Hydrogen-Ion Concentration , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacology , Sequence Deletion , Torpedo , Viral Proteins/genetics
6.
J Mol Biol ; 267(5): 1186-206, 1997 Apr 18.
Article in English | MEDLINE | ID: mdl-9150406

ABSTRACT

What are the thermodynamic consequences of the stepwise conversion of a highly specific (consensus) protein-DNA interface to one that is nonspecific? How do the magnitudes of key favorable contributions to complex stability (burial of hydrophobic surfaces and reduction of DNA phosphate charge density) change as the DNA sequence of the specific site is detuned? To address these questions we investigated the binding of lac repressor (LacI) to a series of 40 bp fragments carrying symmetric (consensus) and variant operator sequences over a range of temperatures and salt concentrations. Variant DNA sites contained symmetrical single and double base-pair substitutions at positions 4 and/or 5 [sequence: see text] in each 10 bp half site of the symmetric lac operator (Osym). Non-specific interactions were examined using a 40 bp non-operator DNA fragment. Disruption of the consensus interface by a single symmetrical substitution reduces the observed equilibrium association constant (K(obs)) for Osym by three to four orders of magnitude; double symmetrical substitutions approach the six orders in magnitude difference between specific and non-specific binding to a 40 bp fragment. At these adjacent positions in the consensus site, the free energy effects of multiple substitutions are non-additive: the first reduces /deltaG(obs)o/ by 3 to 5 kcal mol(-1), approximately halfway to the non-specific level, whereas the second is less deleterious, reducing /deltaG(obs)o/ by less than 3 kcal mol(-1). Variant-specific dependences of K(obs) on temperature and salt concentration characterize these LacI-operator interactions. In general, binding constants and standard free energies of binding both exhibit characteristic extrema near 290 K. As a consequence, both the enthalpic and entropic contributions to stability of Osym and variant complexes change from positive (i.e. entropy driven) at lower temperatures to negative (i.e. enthalpy driven) at higher temperatures, indicating that the heat capacity change upon binding, deltaC(obs)o, is large and negative. In general, /deltaC(obs)o/ decreases as the specificity and stability of the variant complex decreases. Stabilities of complexes of LacI with Osym and all variant operators are strongly [salt]-dependent. Binding constants for the variant complexes exhibit a power-dependence on [salt] that is larger in magnitude (i.e. more negative) than for Osym, but no obvious trend relates changes in contributions from the polyelectrolyte effect and the observed reductions in stability (delta deltaG(obs)o). These variant-specific thermodynamic signatures provide novel insights into the consequences of converting a consensus interface to a less specific one; such insights are not obtained from comparisons at the level of delta deltaG(obs)o. We propose that this variant-specific behavior arises from a strong effect of operator sequence on the extent of induced conformational changes in the protein (and possibly also in the DNA site) which accompany binding.


Subject(s)
Bacterial Proteins/metabolism , Consensus Sequence , DNA-Binding Proteins/metabolism , DNA/metabolism , Escherichia coli Proteins , Operator Regions, Genetic , Repressor Proteins/metabolism , Bacterial Proteins/chemistry , Base Sequence , Binding, Competitive , DNA/chemistry , DNA-Binding Proteins/chemistry , Electrolytes , Lac Operon , Lac Repressors , Models, Chemical , Nucleoproteins/chemistry , Protein Binding , Protein Folding , Repressor Proteins/chemistry , Thermodynamics
7.
J Mol Biol ; 260(5): 697-717, 1996 Aug 02.
Article in English | MEDLINE | ID: mdl-8709149

ABSTRACT

The interaction of lac operator DNA with lac repressor (LacI) is a classic example of a genetic regulatory switch. To dissect the role of stoichiometry, subunit association, and effects of DNA length in positioning this switch, we have determined binding isotherms for the interaction of LacI with a high affinity (Osym) operator on linearized plasmid (2500 bp) DNA over a wide range of macromolecular concentrations (10(-14) to 10(-8) M). Binding data were analyzed using a thermodynamic model involving four equilibria: dissociation of tetramers (T) into dimers (D), and binding of operator-containing plasmid DNA (O) to dimers and tetramers to form three distinct complexes, DO, TO, and TO2. Over the range of concentrations of repressor, operator, and salt (0.075 M K+ to 0.40 M K+) investigated, we find no evidence for any significant thermodynamic effect of LacI dimers. Instead, all isotherms can be interpreted in terms of just two equilibria, involving only T and the TO and TO2 complexes. As a reference binding equilibrium, which we propose must approximate the DO binding interaction, we compare the plasmid Osym results with our extensive studies of the binding of a 40 bp Osym DNA fragment to LacI. On this basis, we obtain a lower bound on the LacI dimer-tetramer equilibrium constant and values of the equilibrium constants for formation of TO and TO2 complexes. At a salt concentration of 0.40 M, the Osym plasmid binding data are consistent with a model with two independent and identical binding sites for operator per LacI tetramer, in which the binding to a site on the tetramer is only slightly more favorable than the reference binding interaction. Increasingly large deviations from the independent-site model are observed as the salt concentration is reduced; binding of a second operator to from TO2 becomes strongly disfavored relative to formation of TO at low salt concentrations (0.075 to 0.125 M). In addition, binding of both the first and second plasmid operator DNA molecules to the tetramer becomes increasingly more favorable than the reference binding interaction as [K+] is reduced from 0.40 M to 0.125 M. At 0.075 M K+, however, the strength of binding of the second plasmid operator DNA to the LacI tetramer is dramatically reduced; this interaction is much less favorable than binding the first plasmid operator DNA, and becomes much less favorable than the reference binding interaction. We propose that these differences arise from changes in the nature of the TO and TO2 complexes with decreasing salt concentration. At low salt concentration, we suggest the hypothesis that flanking non-operator sequences bind non-specifically (coulombically) by local wrapping, and that distant regions of non-operator DNA occupy the second operator-binding site by looping. We propose that wrapping stabilizes both 1:1 and 2:1 complexes at low salt concentration, and that looping stabilizes the 1:1 complex but competitively destabilizes the 2:1 TO2 complex at low salt concentration. These effects must play a role in adjusting the stability and structure of the LacI-lac operator repression complex as the cytoplasmic [K+] varies in response to changes in extracellular osmolarity.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Escherichia coli Proteins , Escherichia coli/genetics , Lac Operon , Operator Regions, Genetic , Plasmids/genetics , Repressor Proteins/metabolism , Escherichia coli/metabolism , Lac Repressors , Models, Chemical , Protein Binding , Protein Conformation , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...