Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824615

ABSTRACT

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Subject(s)
Callithrix , Neocortex , Animals , Neocortex/physiology , Neurons/physiology , Tissue Distribution
3.
Nat Neurosci ; 22(5): 700-708, 2019 05.
Article in English | MEDLINE | ID: mdl-31011227

ABSTRACT

Williams syndrome (WS), caused by a heterozygous microdeletion on chromosome 7q11.23, is a neurodevelopmental disorder characterized by hypersociability and neurocognitive abnormalities. Of the deleted genes, general transcription factor IIi (Gtf2i) has been linked to hypersociability in WS, although the underlying mechanisms are poorly understood. We show that selective deletion of Gtf2i in the excitatory neurons of the forebrain caused neuroanatomical defects, fine motor deficits, increased sociability and anxiety. Unexpectedly, 70% of the genes with significantly decreased messenger RNA levels in the mutant mouse cortex are involved in myelination, and mutant mice had reduced mature oligodendrocyte cell numbers, reduced myelin thickness and impaired axonal conductivity. Restoring myelination properties with clemastine or increasing axonal conductivity rescued the behavioral deficits. The frontal cortex from patients with WS similarly showed reduced myelin thickness, mature oligodendrocyte cell numbers and mRNA levels of myelination-related genes. Our study provides molecular and cellular evidence for myelination deficits in WS linked to neuronal deletion of Gtf2i.


Subject(s)
Behavior, Animal , Myelin Sheath/metabolism , Neurons/metabolism , Prosencephalon/metabolism , Remyelination/drug effects , Transcription Factors, TFII/genetics , Williams Syndrome/genetics , Animals , Axons/drug effects , Clemastine/administration & dosage , Male , Mice, Inbred C57BL , Mice, Transgenic , Motor Skills , Myelin Sheath/ultrastructure , Social Behavior , Transcriptome
4.
Nature ; 546(7660): 611-616, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28614299

ABSTRACT

Physiological needs bias perception and attention to relevant sensory cues. This process is 'hijacked' by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how 'cognitive' cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food-cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic 'hunger neurons' (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/physiology , Food , Homeostasis , Neural Pathways , Photic Stimulation , Agouti-Related Protein/metabolism , Animals , Cues , Hunger/physiology , Hypothalamus/cytology , Hypothalamus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Peptide Fragments/metabolism , Satiety Response/physiology
5.
Neuron ; 91(5): 1154-1169, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27523426

ABSTRACT

The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues.


Subject(s)
Amygdala/physiology , Cues , Entorhinal Cortex/physiology , Food , Hunger/physiology , Satiety Response/physiology , Animals , Male , Mice , Neural Pathways/physiology , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...