Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 49(11): 740-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22002712

ABSTRACT

In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions.


Subject(s)
Organoselenium Compounds/chemistry , Quantum Theory , Selenium/chemistry , Isotopes , Magnetic Resonance Spectroscopy , Molecular Conformation , Protons , Stereoisomerism
2.
Magn Reson Chem ; 48(1): 44-52, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19877126

ABSTRACT

Experimental measurements and second-order polarization propagator approach (SOPPA) calculations of (77)Se-(1)H spin-spin coupling constants together with theoretical energy-based conformational analysis in the series of 2-substituted selenophenes have been carried out. A new basis set optimized for the calculation of (77)Se-(1)H spin-spin coupling constants has been introduced by extending the aug-cc-pVTZ-J basis for selenium. Most of the spin-spin coupling constants under study, especially vicinal (77)Se-(1)H couplings, demonstrated a remarkable stereochemical behavior with respect to the internal rotation of the substituent in the 2-position of the selenophene ring, which is of major importance in the stereochemical studies of the related organoselenium compounds.

3.
Chemistry ; 15(26): 6435-45, 2009 Jun 22.
Article in English | MEDLINE | ID: mdl-19466731

ABSTRACT

Bridging pyrrole and selenophene chemistries: Molecular assemblies have been developed that allow scrutiny of the electronic communication between pyrrole and selenophene nuclei. Divergent syntheses of 2-(selenophen-2-yl)pyrroles and their N-vinyl derivatives from available 2-acylselenophenes and acetylenes in a one-pot procedure have been devised (see scheme), which provide access to these exotic heterocyclic ensembles.The divergent syntheses of 2-(selenophen-2-yl)pyrroles and their N-vinyl derivatives from available 2-acylselenophenes and acetylenes in a one-pot procedure make these exotic heterocyclic ensembles accessible. Now we face a potentially vast area for exploration with a great diversity of far-reaching consequences including conducting electrochromic polymers with repeating of pyrrole and selenophene units (emerging rivalry for polypyrroles and polyselenophenes), the synthesis of functionalized pyrrole-selenophene assembles for advanced materials, biochemistry and medicine, exciting models for theory of polymer conductivity.


Subject(s)
Alkynes/chemistry , Organoselenium Compounds/chemical synthesis , Pyrroles/chemical synthesis , Vinyl Compounds/chemical synthesis , Molecular Structure , Nanotechnology , Organoselenium Compounds/chemistry , Polymers/chemistry , Pyrroles/chemistry , Vinyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...