Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(13): 6561-6572, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38381522

ABSTRACT

Interest is growing in nanoparticles made of earth abundant materials, like alumino(silicate) minerals. Their applications are expanding to include catalysis, carbon sequestration reactions, and medical applications. It remains unclear, however, what factors control their formation and abundance during laboratory synthesis or on a larger industrial scale. This work investigates the complex system of physicochemical conditions that influence the formation of nanosized alumino(silicate) minerals. Samples were synthesized and analyzed by powder X-ray diffraction, in situ and ex situ small angle X-ray scattering, and transmission electron microscopy. Regression analyses combined with linear combination fitting of powder diffraction patterns was used to model the influence of different synthesis conditions including concentration, hydrolysis ratio and rate, and Al : Si elemental ratio on the particle size of the initial precipitate and on the phase abundances of the final products. These models show that hydrolysis ratio has the strongest control on the overall phase composition, while the starting reagent concentration also plays a vital role. For imogolite nanotubes, we determine that increasing concentration, and relatively high or low hydrolysis limit nanotube production. A strong relationship is also observed between the distribution of nanostructured phases and the size of precursor particles. The confidences were >99% for all linear regression models and explained up to 85% of the data variance in the case of imogolite. Additionally, the models consistently predict resulting data from other experimental studies. These results demonstrate the use of an approach to understand complex chemical systems with competing influences and provide insight into the formation of several nanosized alumino(silicate) phases.

2.
Sci Total Environ ; 914: 169410, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38123080

ABSTRACT

Vanadium (V) concentrations in organisms are usually very low. To date, among animals, only some urochordate and annelid species contain very high levels of V in their tissues. A new case of hyper-accumulation of V in a distinct animal phylum (Porifera), namely, the two homoscleromorph sponge species Oscarella lobularis and O. tuberculata is reported. The measured concentrations (up to 30 g/kg dry weight) exceed those reported previously and are not found in all sponge classes. In both Oscarella species, V is mainly accumulated in the surface tissues, and in mesohylar cells, as V(IV), before being partly reduced to V(III) in the deeper tissues. Candidate genes from Bacteria and sponges have been identified as possibly being involved in the metabolism of V. This finding provides clues for the development of bioremediation strategies in marine ecosystems and/or bioinspired processes to recycle this critical metal.


Subject(s)
Porifera , Urochordata , Animals , Vanadium , Ecosystem
3.
Environ Sci Technol ; 57(49): 20615-20626, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38019574

ABSTRACT

Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.


Subject(s)
Minerals , Soil , Soil/chemistry , Minerals/chemistry , Carbon , Microscopy, Electron, Transmission
4.
Environ Sci Technol ; 56(23): 16831-16837, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36394535

ABSTRACT

Nanosized zinc sulfides (nano-ZnS) have size-dependent and tunable physical and chemical properties that make them useful for a variety of technological applications. For example, structural changes, especially caused by strain, are pronounced in nano-ZnS < 5 nm in size, the size range typical of incidental nano-ZnS that form in the environment. Previous research has shown how natural organic matter impacts the physical properties of nano-ZnS but was mostly focused on their aggregation state. However, the specific organic molecules and the type of functional groups that are most important for controlling the nano-ZnS size and strain remain unclear. This study examined the size-dependent strain of nano-ZnS synthesized in the presence of serine, cysteine, glutathione, histidine, and acetate. Synchrotron total scattering pair distribution function analysis was used to determine the average crystallite size and strain. Among the different organic molecules tested, those containing a thiol group were shown to affect the particle size and size-induced strain most strongly when added during synthesis but significantly reduced the particle strain when added to as-formed nano-ZnS. The same effects are useful to understand the properties and behavior of natural nano-ZnS formed as products of microbial activity, for example, in reducing environments, or of incidental nano-ZnS formed in organic wastes.


Subject(s)
Nanoparticles , Zinc Compounds , Zinc Compounds/analysis , Zinc Compounds/chemistry , Sulfides/chemistry , Nanoparticles/chemistry , Particle Size
5.
Sci Rep ; 12(1): 18268, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310318

ABSTRACT

Yttrium (Y) has gained importance in high tech applications and, together with the other rare earth elements (REEs), is also considered to be an emerging environmental pollutant. The alpine plant Saxifraga paniculata was previously shown to display high metal tolerance and an intriguing REE accumulation potential. In this study, we analysed soil grown commercial and wild specimens of Saxifraga paniculata to assess Y accumulation and shed light on the uptake pathway. Laser ablation inductively coupled plasma mass spectrometry and synchrotron-based micro X-ray fluorescence spectroscopy was used to localise Y within the plant tissues and identify colocalized elements. Y was distributed similarly in commercial and wild specimens. Within the roots, Y was mostly located in the epidermis region. Translocation was low, but wild individuals accumulated significantly more Y than commercial ones. In plants of both origins, we observed consistent colocalization of Al, Fe, Y and Ce in all plant parts except for the hydathodes. This indicates a shared pathway during translocation and could explained by the formation of a stable organic complex with citrate, for example. Our study provides important insights into the uptake pathway of Y in S. paniculata, which can be generalised to other plants.


Subject(s)
Metals, Rare Earth , Saxifragaceae , Humans , Yttrium/chemistry , Metals, Rare Earth/analysis , Soil/chemistry , Plants
6.
J Hazard Mater ; 424(Pt B): 127470, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34687997

ABSTRACT

Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.


Subject(s)
Aluminum Oxide , Microbiota , Biodegradation, Environmental , Soil , Soil Microbiology
7.
Environ Pollut ; 292(Pt B): 118414, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34728325

ABSTRACT

Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.


Subject(s)
Nanoparticles , Soil Pollutants , Isotopes , Soil , Soil Pollutants/analysis , Sulfides , X-Ray Absorption Spectroscopy , Zinc/analysis , Zinc Compounds
8.
Chemosphere ; 287(Pt 4): 132315, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34600011

ABSTRACT

The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.


Subject(s)
Brassicaceae , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Environmental Monitoring , Metals/analysis , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
9.
Environ Pollut ; 279: 116897, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33774364

ABSTRACT

It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.


Subject(s)
Soil Pollutants , Solanum melongena , Solanum nigrum , Biodegradation, Environmental , Cadmium/analysis , Plant Roots/chemistry , Soil Pollutants/analysis , Sulfur , X-Ray Absorption Spectroscopy
10.
Environ Sci Pollut Res Int ; 28(4): 3756-3765, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32270459

ABSTRACT

The use of silver nanoparticles (AgNPs) in agriculture and many consumer products has led to a significant release of Ag in the environment. Although Ag toxicity in terrestrial organisms has been studied extensively, very little is known about the accumulation capacity and coping mechanisms of organisms in Ag-contaminated soil. In this context, we exposed Eisenia fetida earthworms to artificial OECD soil spiked with a range of concentrations of Ag (AgNPs or AgNO3). The main aims were to (1) identify the location and form of accumulation of Ag in the exposed earthworms and (2) better understand the physiological mechanisms involved in Ag detoxification. The results showed that similar doses of AgNPs or AgNO3 did not have the same effect on E. fetida survival. The two forms of Ag added to soil exhibited substantial differences in speciation at the end of exposure, but the Ag speciation and content of Ag in earthworms were similar, suggesting that biotransformation of Ag occurred. Finally, 3D images of intact earthworms obtained by X-ray micro-computed tomography revealed that Ag accumulated preferentially in the chloragogen tissue, coelomocytes, and nephridial epithelium. Thus, E. fetida bioaccumulates Ag, but a regulation mechanism limits its impact in a very efficient manner. The location of Ag in the organism, the competition between Ag and Cu, and the speciation of internal Ag suggest a link between Ag and the thiol-rich proteins that are widely present in these tissues, most probably metallothioneins, which are key proteins in the sequestration and detoxification of metals.


Subject(s)
Metal Nanoparticles , Oligochaeta , Soil Pollutants , Animals , Silver , Soil , Soil Pollutants/analysis , X-Ray Microtomography
11.
Chemosphere ; 269: 128761, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33168285

ABSTRACT

The widespread use of silver nanoparticles (AgNPs) in consumer products that release Ag throughout their life cycle has raised potential environmental concerns. AgNPs primarily accumulate in soil through the spreading of sewage sludge (SS). In this study, the effects of direct exposure to AgNPs or indirect exposure via SS contaminated with AgNPs on the earthworm Eisenia fetida and soil microbial communities were compared, through 3 scenarios offering increasing exposure concentrations. The effects of Ag speciation were analyzed by spiking SS with AgNPs or AgNO3 before application to soil. SS treatment strongly impacted Ag speciation due to the formation of Ag2S species that remained sulfided after mixing in the soil. The life traits and expression of lysenin, superoxide dismutase, cd-metallothionein genes in earthworms were not impacted by Ag after 5 weeks of exposure, but direct exposure to Ag without SS led to bioaccumulation of Ag, suggesting transfer in the food chain. Ag exposure led to a decrease in potential carbon respiration only when directly added to the soil. The addition of SS had a greater effect on soil microbial diversity than the form of Ag, and the formation of Ag sulfides in SS reduced the impact of AgNPs on E. fetida and soil microorganisms compared with direct addition.


Subject(s)
Metal Nanoparticles , Microbiota , Oligochaeta , Soil Pollutants , Animals , Metal Nanoparticles/toxicity , Sewage , Silver/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
12.
Environ Sci Pollut Res Int ; 28(6): 7564-7573, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33033933

ABSTRACT

The increasingly frequent detection of resistant organic micropollutants in waters calls for better treatment of these molecules that are recognized to be dangerous for human health and the environment. As an alternative to conventional adsorbent material such as activated carbon, silica-clay nanocomposites were synthesized for the removal of pharmaceuticals in contaminated water. Their efficiency with respect to carbamazepine, ciprofloxacin, danofloxacin, doxycycline, and sulfamethoxazole was assessed in model water and real groundwater spiked with the five contaminants. Results showed that the efficacy of contaminant removal depends on the chemical properties of the micropollutants. Among the adsorbents tested, the nanocomposite made of 95% clay and 5% SiO2 NPs was the most efficient and was easily recovered from solution after treatment compared with pure clay, for example. The composite is thus a good candidate in terms of operating costs and environmental sustainability for the removal of organic contaminants.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents , Clay , Humans , Silicon Dioxide , Water , Water Pollutants, Chemical/analysis
13.
Plants (Basel) ; 9(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33137928

ABSTRACT

Screening of native plant species from mining sites can lead to identify suitable plants for phytoremediation approaches. In this study, we assayed heavy metals tolerance and accumulation in native and dominant plants growing on abandoned Pb/Zn mining site in eastern Morocco. Soil samples and native plants were collected and analyzed for As, Cd, Cu, Ni, Sb, Pb, and Zn concentrations. Bioconcentration factor (BCF), translocation factor (TF), and biological accumulation coefficient (BAC) were determined for each element. Our results showed that soils present low organic matter content combined with high levels of heavy metals especially Pb and Zn due to past extraction activities. Native and dominant plants sampled in these areas were classified into 14 species and eight families. Principal components analysis separated Artemisia herba-alba with high concentrations of As, Cd, Cu, Ni, and Pb in shoots from other species. Four plant species, namely, Reseda alba, Cistus libanotis, Stipa tenacissima, and Artemisia herba-alba showed strong capacity to tolerate and hyperaccumulate heavy metals, especially Pb, in their tissues. According to BCF, TF, and BAC, these plant species could be used as effective plants for Pb phytoextraction. Stipa tenacissima and Artemisia herba-alba are better suited for phytostabilization of Cd/Cu and Cu/Zn, respectively. Our study shows that several spontaneous and native plants growing on Pb/Zn contaminated sites have a good potential for developing heavy metals phytoremediation strategies.

14.
J Agric Food Chem ; 68(30): 7926-7934, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32610013

ABSTRACT

RNA interference is a promising crop protection technology that has seen rapid development in the past several years. Here, we investigated polyamino acid biopolymers, inorganic nanomaterials, and hybrid organic-inorganic nanomaterials for delivery of dsRNA and efficacy of gene knockdown using the model nematode Caenorhabditis elegans. Using an oral route of delivery, we are able to approximate how nanomaterials will be delivered in the environment. Of the materials investigated, only Mg-Al layered double-hydroxide nanoparticles were effective at gene knockdown in C. elegans, reducing marker gene expression to 66.8% of that of the control at the lowest tested concentration. In addition, we identified previously unreported injuries to the mouthparts of C. elegans associated with the use of a common cell-penetrating peptide, poly-l-arginine. Our results will allow the pursuit of further research into promising materials for dsRNA delivery and also allow for the exclusion of those with little efficacy or deleterious effects.


Subject(s)
Caenorhabditis elegans/genetics , Gene Knockdown Techniques/methods , Nanostructures/chemistry , RNA, Double-Stranded/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Knockdown Techniques/instrumentation , RNA Interference , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism
15.
Environ Pollut ; 253: 578-598, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330350

ABSTRACT

Silver nanoparticles (AgNPs) are widely incorporated in many products, partly due to their antimicrobial properties. The subsequent discharge of this form of silver into wastewater leads to an accumulation of silver species (AgNPs and derivatives resulting from their chemical transformation), in sewage sludge. As a result of the land application of sewage sludge for agricultural or remediation purposes, soils are the primary receiver media of silver contamination. Research on the long-term impact of AgNPs on the environment is ongoing, and this paper is the first review that summarizes the existing state of scientific knowledge on the potential impact of silver species introduced into the soil via sewage sludge, from microorganisms to earthworms and plants. Silver species can easily enter cells through biological membranes and affect the physiology of organisms, resulting in toxic effects. In soils, exposure to AgNPs may change microbial biomass and diversity, decrease plant growth and inhibit soil invertebrate reproduction. Physiological, biochemical and molecular effects have been documented in various soil organisms and microorganisms. Negative effects on organisms of the dominant form of silver in sewage sludge, silver sulfide (Ag2S), have been observed, although these effects are attenuated compared to the effects of metallic AgNPs. However, silver toxicity is complex to evaluate and much remains unknown about the ecotoxicology of silver species in soils, especially with respect to the possibility of transfer along the trophic chain via accumulation in plant and animal tissues. Critical points related to the hazards associated with the presence of silver species in the environment are described, and important issues concerning the ecotoxicity of sewage sludge applied to soil are discussed to highlight gaps in existing scientific knowledge and essential research directions for improving risk assessment.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Soil Pollutants/toxicity , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Biomass , Ecotoxicology , Metal Nanoparticles/chemistry , Oligochaeta/drug effects , Plants/drug effects , Sewage/chemistry , Silver Compounds/toxicity , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Wastewater/chemistry
16.
Environ Sci Technol ; 52(22): 12987-12996, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30339368

ABSTRACT

Zinc (Zn) is a potentially toxic trace element that is present in large amounts in organic wastes (OWs) spread on agricultural lands as fertilizer. Zn speciation in OW is a crucial parameter to understand its fate in soil after spreading and to assess the risk associated with agricultural recycling of OW. Here, we investigated changes in Zn speciation from raw OWs up to digestates and/or composts for a large series of organic wastes sampled in full-scale plants. Using extended X-ray absorption fine structure, we show that nanosized Zn sulfide (nano-ZnS) is a major Zn species in raw liquid OWs and a minor species in raw solid OWs. Whatever the characteristics of the raw OW, anaerobic digestion always favors the formation of nano-ZnS (>70% of zinc in digestates). However, after 1 to 3 months of composting of OWs, nano-ZnS becomes a minor species (<10% of zinc). In composts, Zn is mostly present as amorphous Zn phosphate and Zn sorbed to ferrihydrite. These results highlight (i) the influence of OW treatment on Zn speciation and (ii) the chemical instability of nano-ZnS formed in OW in anaerobic conditions.


Subject(s)
Composting , Anaerobiosis , Soil , Sulfides , Zinc , Zinc Compounds
17.
Environ Sci Process Impacts ; 20(10): 1390-1403, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30264835

ABSTRACT

Coal combustion ash is a promising alternative source of rare earth elements (REE; herein defined as the 14 stable lanthanides, yttrium, and scandium). Efforts to extract REE from coal ash will depend heavily on the location and speciation of these elements in the ash. This study sought to identify the major chemical forms of yttrium (Y), as a representative REE in coal fly ash samples selected from major coal sources in the United States. Y speciation was evaluated using both bulk scale analyses (sequential extractions, Y K-edge X-ray absorption near-edge spectroscopy - XANES) and complementary analyses at the micron scale (micro-focus X-ray fluorescence and micro-XANES). Sequential selective extractions revealed that the REE were primarily in the residual (unextracted fraction) of coal fly ash samples. Extraction patterns for yttrium resembled those of the lanthanides, indicating that these elements were collectively dispersed throughout the aluminosilicate glass in fly ash. Bulk XANES analysis indicated that Y coordination states resembled a combination of Y-oxides, Y-carbonate, and Y-doped glass, regardless of ash origin. However, in the microprobe analysis, we observed "hotspots" of Y (∼10-50 µm) in some samples that included different Y forms (e.g., Y-phosphate) not observed in bulk measurements. Overall, this study demonstrated that yttrium (and potentially other REEs) are entrained in the glass phase of fly ash and that microscale investigations of individual high-REE regions in fly ash samples do not necessarily capture the dominant speciation.


Subject(s)
Coal Ash/chemistry , Yttrium/chemistry , Aluminum Silicates , Coal , Glass , Metals, Rare Earth , X-Ray Absorption Spectroscopy
18.
Sci Rep ; 8(1): 4408, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535369

ABSTRACT

In this methodological study, we demonstrated the relevance of 3D imaging performed at various scales for the ex vivo detection and location of cerium oxide nanomaterials (CeO2-NMs) in mouse lung. X-ray micro-computed tomography (micro-CT) with a voxel size from 14 µm to 1 µm (micro-CT) was combined with X-ray nano-computed tomography with a voxel size of 63 nm (nano-CT). An optimized protocol was proposed to facilitate the sample preparation, to minimize the experimental artifacts and to optimize the contrast of soft tissues exposed to metal-based nanomaterials (NMs). 3D imaging of the NMs biodistribution in lung tissues was consolidated by combining a vast variety of techniques in a correlative approach: histological observations, 2D chemical mapping and speciation analysis were performed for an unambiguous detection of NMs. This original methodological approach was developed following a worst-case scenario of exposure, i.e. high dose of exposure with administration via intra-tracheal instillation. Results highlighted both (i) the non-uniform distribution of CeO2-NMs within the entire lung lobe (using large field-of-view micro-CT) and (ii) the detection of CeO2-NMs down to the individual cell scale, e.g. macrophage scale (using nano-CT with a voxel size of 63 nm).


Subject(s)
Lung/diagnostic imaging , Lung/pathology , Metals , Nanostructures , Animals , Cerium , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Macrophages/metabolism , Macrophages/pathology , Mice , Spectrum Analysis , Tissue Distribution , X-Ray Microtomography
19.
Langmuir ; 34(11): 3386-3394, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29461057

ABSTRACT

Multilayered thin films combining two oppositely charged nanoparticles (NPs), i.e., cellulose nanocrystals (CNCs) and Ge-imogolites, have been successfully obtained by the layer-by-layer method. CNC/Ge-imogolite (NP/NP) film growth patterns were studied by comparing growth mode of all of the nanoparticles thin films to that of films composed of CNC or Ge-imogolites combined with polyelectrolytes (PEs), i.e., cationic poly(allylamine hydrochloride) and anionic poly-4-styrene sulfonate (NP/PE films). NP/NP and NP/PE films growth patterns were found to be different. To get a deeper understanding of the growth mode of NP/NP, impact of different parameters, such as imogolites aspect ratio, adsorption time, ionic strength, and repeated immersion/drying, was evaluated and influence of the drying step is emphasized. The aspect ratio of imogolites was identified as an important feature for the film's architecture. The short Ge-imogolites form denser films because the surface packing was more efficient.

20.
Environ Sci Technol ; 52(3): 1655-1664, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29224346

ABSTRACT

Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (ß-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR)2 accounted for ∼60% of the Hg, with ∼20% present as ß-HgS and/or Hg(SR)4 species. ß-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.


Subject(s)
Mercury , Petroleum , Sulfur , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...