Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(7): 12358-12366, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34255478

ABSTRACT

Because of their unique atomic structure, 2D materials are able to create an up-to-date paradigm in fundamental science and technology on the way to engineering the band structure and electronic properties of materials on the nanoscale. One of the simplest methods along this path is the superposition of several 2D nanomaterials while simultaneously specifying the twist angle between adjacent layers (θ), which leads to the emergence of Moiré superlattices. The key challenge in 2D nanoelectronics is to obtain a nanomaterial with numerous Moiré superlattices in addition to a high carrier mobility in a stable and easy-to-fabricate material. Here, we demonstrate the possibility of synthesizing twisted multilayer graphene (tMLG) with a number of monolayers NL = 40-250 and predefined narrow ranges of θ = 3-8°, θ = 11-15°, and θ = 26-30°. A 2D nature of the electron transport is observed in the tMLG, and its carrier mobilities are close to those of twisted bilayer graphene (tBLG) (with θ = 30°) between h-BN layers. We demonstrate an undoubtful presence of numerous Moiré superlattices simultaneously throughout the entire tMLG thickness, while the periods of these superlattices are rather close to each other. This offers a challenge of producing a next generation of devices for nanoelectronics, twistronics, and neuromorphic computing for large data applications.

2.
Proc Natl Acad Sci U S A ; 116(37): 18209-18217, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-29666235

ABSTRACT

Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

3.
Nanotechnology ; 19(47): 475502, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-21836273

ABSTRACT

Extraordinary Hall effect probes with 160 nm × 160 nm working area were fabricated using photo- and electron-beam lithographic procedures with the aim of direct measurements of MFM cantilever tip magnetic properties. The magnetic field sensitivity of the probes was 35 Ω T(-1). Magnetic induction of the MFM cantilever tips coated by Co and SmCo films was measured with the probes. It was shown that the resolution of the probes was of the order of 10 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...