Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790891

ABSTRACT

Spinal cord stimulation (SCS) is a therapeutic modality for the treatment of various chronic pain conditions that has rapidly evolved over the past 50 years. Unfortunately, over time, patients implanted with SCS undergo a habituation phenomenon leading to decreased pain relief. Consequently, the discovery of new stimulation waveforms and SCS applications has been shown to prolong efficacy and reduce explantation rates. This article explores various SCS waveforms, their applications, and proposes a graded approach to habituation mitigation. We suspect the neural habituation phenomenon parallels that seen in pharmacology. Consequently, we urge further exploration of the early introduction of these stimulation strategies to abate spinal cord stimulation habituation.

2.
Obesity (Silver Spring) ; 32(1): 131-140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38131100

ABSTRACT

OBJECTIVE: The impact of early-life stress on weight-loss maintenance is unknown. METHODS: Mice underwent neonatal maternal separation (NMS) from 0 to 3 weeks and were weaned onto a high-fat sucrose diet (HFSD) from 3 to 20 weeks. Calorie-restricted weight loss on a low-fat sucrose diet (LFSD) occurred over 2 weeks to induce a 20% loss in body weight, which was maintained for 6 weeks. After weight loss, half of the mice received running wheels, and the other half remained sedentary. Mice were then fed ad libitum on an HFSD or LFSD for 10 weeks and were allowed to regain body weight. RESULTS: NMS mice had greater weight regain, total body weight, and adiposity compared with naïve mice. During the first week of refeeding, NMS mice had increased food intake and were in a greater positive energy balance than naïve mice. Female mice were more susceptible to NMS-induced effects, including increases in adiposity. NMS and naïve females were more susceptible to HFSD-induced weight regain. Exercise was beneficial in the first week of regain in male mice, but, long-term, only those on the LFSD benefited from exercise. As expected, HFSD led to greater weight regain than LFSD. CONCLUSIONS: Early-life stress increases weight regain in mice.


Subject(s)
Adverse Childhood Experiences , Mice , Male , Female , Animals , Maternal Deprivation , Obesity/etiology , Weight Loss , Weight Gain , Sucrose
3.
bioRxiv ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37503190

ABSTRACT

Early life stress increases obesity risk, but its impact on weight loss maintenance is unknown. Mice underwent neonatal maternal separation (NMS) from 0-3 weeks and were weaned onto high fat sucrose diet (HFSD) from 3-20 weeks. Calorie-restricted weight loss on a low fat sucrose diet (LFSD) occurred over 2 weeks to induce a 20% loss in body weight, which was maintained for 6 weeks. After weight loss, half the mice received running wheels (EX) the other half remained sedentary (SED). Mice were then fed ad libitum on HFSD or LFSD for 10 weeks and allowed to regain body weight. NMS mice had greater weight regain, total body weight and adiposity compared to naïve mice. During the first week of refeeding, NMS mice had increased food intake and were in a greater positive energy balance than naïve mice, but total energy expenditure was not affected by NMS. Female mice were more susceptible to NMS-induced effects, including increases in adiposity. NMS and naïve females were more susceptible to HFSD-induce weight regain. Exercise was beneficial in the first week of regain in male mice, but long-term only those on LFSD benefited from EX. As expected, HFSD led to greater weight regain than LFSD.

4.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R353-R367, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36693166

ABSTRACT

Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.


Subject(s)
Diet, High-Fat , Dietary Sucrose , Stress, Psychological , Animals , Female , Mice , Body Weight , Diet, High-Fat/adverse effects , Hypothalamo-Hypophyseal System/metabolism , Maternal Deprivation , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Pituitary-Adrenal System/metabolism , Dietary Sucrose/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...