Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14289, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253753

ABSTRACT

Long-term recurrent stress is a common cause of neuropsychiatric disorders. Animal models are widely used to study the pathogenesis of stress-related psychiatric disorders. The zebrafish (Danio rerio) is emerging as a powerful tool to study chronic stress and its mechanisms. Here, we developed a prolonged 11-week chronic unpredictable stress (PCUS) model in zebrafish to more fully mimic chronic stress in human populations. We also examined behavioral and neurochemical alterations in zebrafish, and attempted to modulate these states by 3-week treatment with an antidepressant fluoxetine, a neuroprotective omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), a pro-inflammatory endotoxin lipopolysaccharide (LPS), and their combinations. Overall, PCUS induced severe anxiety and elevated norepinephrine levels, whereas fluoxetine (alone or combined with other agents) corrected most of these behavioral deficits. While EPA and LPS alone had little effects on the zebrafish PCUS-induced anxiety behavior, both fluoxetine (alone or in combination) and EPA restored norepinephrine levels, whereas LPS + EPA increased dopamine levels. As these data support the validity of PCUS as an effective tool to study stress-related pathologies in zebrafish, further research is needed into the ability of various conventional and novel treatments to modulate behavioral and neurochemical biomarkers of chronic stress in this model organism.


Subject(s)
Eicosapentaenoic Acid/metabolism , Fluoxetine/pharmacology , Lipopolysaccharides/chemistry , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/pharmacology , Behavior, Animal , Disease Models, Animal , Emotions , Endotoxins/metabolism , Neurochemistry/methods , Norepinephrine/blood , Phenotype , Stress, Physiological , Zebrafish
2.
Sci Rep ; 10(1): 19981, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203921

ABSTRACT

Stress-related neuropsychiatric disorders are widespread, debilitating and often treatment-resistant illnesses that represent an urgent unmet biomedical problem. Animal models of these disorders are widely used to study stress pathogenesis. A more recent and historically less utilized model organism, the zebrafish (Danio rerio), is a valuable tool in stress neuroscience research. Utilizing the 5-week chronic unpredictable stress (CUS) model, here we examined brain transcriptomic profiles and complex dynamic behavioral stress responses, as well as neurochemical alterations in adult zebrafish and their correction by chronic antidepressant, fluoxetine, treatment. Overall, CUS induced complex neurochemical and behavioral alterations in zebrafish, including stable anxiety-like behaviors and serotonin metabolism deficits. Chronic fluoxetine (0.1 mg/L for 11 days) rescued most of the observed behavioral and neurochemical responses. Finally, whole-genome brain transcriptomic analyses revealed altered expression of various CNS genes (partially rescued by chronic fluoxetine), including inflammation-, ubiquitin- and arrestin-related genes. Collectively, this supports zebrafish as a valuable translational tool to study stress-related pathogenesis, whose anxiety and serotonergic deficits parallel rodent and clinical studies, and genomic analyses implicate neuroinflammation, structural neuronal remodeling and arrestin/ubiquitin pathways in both stress pathogenesis and its potential therapy.


Subject(s)
Behavior, Animal/physiology , Stress, Psychological/physiopathology , Transcriptome/physiology , Zebrafish/physiology , Animals , Antidepressive Agents/pharmacology , Anxiety/drug therapy , Anxiety/physiopathology , Behavior, Animal/drug effects , Brain/drug effects , Brain/physiopathology , Disease Models, Animal , Female , Fluoxetine/pharmacology , Male , Stress, Psychological/drug therapy , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...